

Using Verdi to Generate vi and emacs Tagging
Databases

David Carson

Huawei Technologies Canada

Kanata, Ontario, Canada

http://www.huawei.com/ca-en/index.htm

ABSTRACT

A compiled and elaborated Synopsys Verdi Knowledge Database (KDB) contains valuable
information that can be accessed via tcl scripts and utilized by the most widely used code
editors to allow for advanced design browsing. Once a design has been compiled by Verdi the
line numbers of variables, modules, packages, classes, etc. may be extracted from the database
and written out to vi and emacs "tag files". These tag files may then be used by these editors
to browse through a design's RTL with ease. For example, when examining a piece of code
that contains an instance of a module or a structure definition, if the code editor has access to
a "tag file" it can take the coder directly to the module definition or structure definition with a
"key sequence" (just like a hyperlink) as opposed to having to find the file that contains the
reference - perhaps in some distant directory tree - and open it in a separate buffer or edit
session.

http://www.huawei.com/ca-en/index.htm

SNUG 2017

Page 2 Using Verdi to Generate vi and emacs Tagging Databases

Table of Contents

1. An Introduction to Tagging .. 4

1.1 What is a Tag and What Does It Do?.. 4

1.2 A Brief History of Tags .. 5

1.3 Tags and SystemVerilog ... 6

2. Tag Files and the Verdi Knowledge Database .. 6

2.1 The Anatomy of a Tag file .. 6

2.1.1 vi ... 6

2.1.2 emacs .. 7

2.2 The Verdi Knowledge Database .. 8

2.2.1 Verdi Access Using tcl .. 8

2.2.2 tags.tcl .. 8

2.2.3 Recognised SystemVerilog Identifiers .. 15

3. Running the tags.tcl Script .. 16

4. Using Tags .. 17

4.1.1 vi ... 17

4.1.1 emacs .. 19

4.1.2 Shortcoming and Limitations ... 19

5. Future Work .. 20

6. Conclusions ... 21

Table of Figures

Figure 1. Tagging Example... 4

Figure 2. Simple Verilog Example ... 6

Figure 3. vi Tags File Contents for Simple Verilog Example .. 7

Figure 4. emacs Tags File Contents for Simple Verilog Example ... 7

Figure 5. Extracting Tags From Only One Instance ... 9

Figure 6. First Tree Traveral – Searching for Modules .. 10

Figure 7. npiModule Callback ... 11

Figure 8. Second Tree Traveral – Searching for Identifiers ... 12

Figure 9. Generic Identifier Call Back .. 13

Figure 10. Generating the vi tags ... 14

Figure 11. Generating the emacs tags .. 15

Figure 12. Opening Verdi’s TCL Command Entry Dialog Box ... 17

SNUG 2017

Page 3 Using Verdi to Generate vi and emacs Tagging Databases

Figure 13. Multiple Matching Tags Example .. 19

Figure 14. Multiple Matching Tags Menu .. 19

Table of Tables

Table 1. Recognised SystemVerilog Identifiers ... 16

SNUG 2017

Page 4 Using Verdi to Generate vi and emacs Tagging Databases

1. An Introduction to Tagging

1.1 What is a Tag and What Does It Do?

A tag is a SystemVerilog identifier (or an identifier in any language, tagging is common to most
programming languages) that can be jumped to (just like a hyperlink on the web). An identifier is
any SystemVerilog variable, instance, package, input/output port, structure definition, label, task,
function, etc and jumping means that when the cursor is placed over the identifier and key
sequence or mouse click is entered the editor jumps to the definition of the identifier – either in the
same edit buffer or a new one. A different sequence returns to the user to the tag location of the file
that was being edited prior to the jump. The number of jumps a user make take is unlimited.

All of the tags associated with a design are stored in a tag database that is used by an editor to
navigate from the tag to the tag definition.

Using tags to browse through a design is a very convienent way of navigating through RTL source
code; especially if the file structure of the underlying code base is unfamiliar, large or spread over a
file system that inclues multiple file trees.

For example, consider this trivial design where module top (top.v) contains two sub-modules mod-
_a and mod_b (mod_a.v, mod_b.v) and the three modules refer to the package PKG (pkg.v).

Figure 1. Tagging Example

If file top.v is being edited and a designer wants to examine the module mod_a rather than opening
the file mod_a.v in another editing session, which requires that the designer knows the location of

SNUG 2017

Page 5 Using Verdi to Generate vi and emacs Tagging Databases

the file, the designer could simply “jump” to the tag mod_a. To do this in vi or emacs a designer
simply puts the cursor on the identifier mod_a (on line 11 in top.v) and enters the keystroke to
“jump to tag” and the editor will automatically open the file mod_a.v. The editor knows to open
mod_a.v, where to find it, and to put the cursor on line 3 of this file, because this information is
stored in a tag database that was previously generated for this design.

Similarily if a designer was editing file mod_a.v they could jump to the definition of the structure
bus_s, and their editor would open the file pkg.v and place the cursor on line 6.

While tagging may seem unnecessary in a design of this simplicity, real designs typically include
many dozens of files and could include thousands of unique identifiers (tags) spread across a
complex file system with symbolic links and much source code that does not even belong to the
design being browsed. Furthermore, the code may be conditionally compiled with variables hidden
away in build systems or environment variables.

It is in this more typical scenario that tagging via Verdi SystemVerilog tags shines since it includes
design context in the tagging process – tags are only generated from fully compiled designs and only
tag of design interest are included. This is a significant improvement over traditional tagging
practices.

1.2 A Brief History of Tags

Tagging has been utilized by programmers for decades. Tagging programs parse source files and
generated tag databases for use by editors. Early versions of tagging programs include the original
version written by Ken Arnold in the mid 1970s, the ctags program included in the elvis version of
vi authored by Steve Kirkendall and others in the early 1990s. And finally the subsequent and more
widely used exuberant ctags version written by Darren Hiebert in the mid 1990s that supports a
wide varity of languages (including Verilog) and still widely used today.

Tagging is also built into many commercial and freeware Integrated Development Enviroments
(IDEs) such as MicroSoft VisualStudio and Eclipse. Many IDEs rely on vendor supplied or
community sourced language parsers and plug-ins. Programmers of widely used programming
languages such as ‘C’, Java or Perl have access to high quality language parsers while users of less
widely used languages such as SystemVerilog or VHDL do not.

Tagging programs are provided a list of source code files from which tags are extracted. The
programs usually employ light weight language parsers to extract identifiers from the source code
and then created a tag database of these identifiers for use by code editors. Because these parsers
are neither pre-processors nor compilers, pre-processor macros and mischevious syntax errors
would often cause tags to be missing or incorrect. Furthmore, duplicate or non-relevant tags may
be generated if wild card searching of files is used to generate lists of files to be tagged or if
conditional compiling is employed within files.

Some editors will produce an internal set of tags for every file that is loaded for rapid real time
tagging. This approach can break down if the language parser does not deal well with syntax errors
that may be present in the source code and cannot handle pre-processor macros or included files.

Some IDEs will use tagging information to display lists of tags in a separate editor window, or
provide real time “pop up” preview information about variable types or function definitions. vi and
emacs both have sophisticated plug-ins that support this kind of capability for use with ctags.

Verdi is also a very powerful design exploration tool which offers identifier tagging as described
above and is often used by design and verification to understand and navigate large complex
designs – however it is not an editor.

SNUG 2017

Page 6 Using Verdi to Generate vi and emacs Tagging Databases

On the subject of new tagging tools, Gnu Global is a relatively new project and has recently made a
move to take over from exuberant ctags as the defacto tag generation platform of the future.

1.3 Tags and SystemVerilog

With the introduction of SystemVerilog 2012 the language became extremely complex to parse and
the traditional community supplied taggers did not cope well with the advanced language features.
While previous versions of Verilog could be tagged with reasonable accuracy and produce accurate
lists of registers and wires, new language features may cause some freeware language parsers to
struggle to produce full and comprehensive sets of tags.

ctags and etags are still widely used and very effective tagging tools - with the appropriate regular
expressions used during tag generation. What would be an added benifet for the current
generation of SystemVerilog coders is a way to generate comprehensive and accurate tags for large
SystemVerilog designs without need to maintain and tweak regular expressions or maintain tagging
file lists. Furthermore it would be ideal of the tagging system was fully design aware – only tags
that are compiled and used by the design are included in the tag database.

2. Tag Files and the Verdi Knowledge Database

For those with access to Synopsys’s Verdi Debugging Platfrom there is a way to generate
comprehensive and accurate tags for large SystemVerilog designs – use the Synopsys VC Apps Native
Programming Interface (NPI). Before discussing the NPI it is worth discussing what a tag actually is.

2.1 The Anatomy of a Tag file

The format for vi tag files and emacs tag files are both well defined, albeit different and easily found
on the internet; for example, the Wikipedia entry for “ctags” provides complete details for each of
them.

Consider the following simple Verilog example:

Figure 2. Simple Verilog Example

2.1.1 vi

The format for a vi tags file is:

{tagname}<Tab>{tagfile}<Tab>{tagaddress}

Where fields given above are::
 {tagname} – Any identifier, not containing white space.

SNUG 2017

Page 7 Using Verdi to Generate vi and emacs Tagging Databases

 <Tab> – Exactly one tab character.

 {tagfile} – The name of the file containing {tagname}.

 {tagaddress} – A line number or an ex mode command that will take the editor to the
location of the tag.

For the above example the vi tags file would contain:

Figure 3. vi Tags File Contents for Simple Verilog Example

The first line indicates that the identifier i_in is defined on line 2 of the file top.v, o_out is

defined on line 4 of top.v and top is located on line 1 of top.v. The tag file does not offer an
information about what the idenitifier is, only where to find its definition.

2.1.2 emacs

An emacs tag file separates the contents of input source files into sections separated by non-
printable ASCII characters. These characters are represented as bracketed hexadecimal
numbers below.

Each section contains a two line header. The first line contains a single <\x0c> character. The
second line contains the file name and the total size of the identifier section in bytes including
carriage returns.

{src_file},{size_of_tag_definition_data_in_bytes}

A list of tag identifiers follows the header with the following format

{tag_definition_text}<\x7f>{tagname}<\x01>{line_number},{byte_offset}

{tagname} and the <\x01> character may be omitted if the name of the tag can be deduced
from the text at the tag definition.

For the same example as above, the emacs tags file would contain:

Figure 4. emacs Tags File Contents for Simple Verilog Example

The first line is the section separator character <\x0c>. The second line indicates this section
corresponds to the file top.v and that the top.v identifiers section is 115 bytes in length. The
next three lines contain identifier information. The first line indicates that top is located on

https://en.wikipedia.org/wiki/Tab_key
https://en.wikipedia.org/wiki/Ex_(editor)

SNUG 2017

Page 8 Using Verdi to Generate vi and emacs Tagging Databases

line 1 of top.v at byte offset 0 of the file, the second line that identifier i_in is defined on line 3

of the file top.v at byte offset 19 and the third line that identifier o_out is defined on line 4 of
top.v at byte offset 57. The non-printable characters and byte offsets are used by emacs internal
searching mechanims.

2.2 The Verdi Knowledge Database

A design that has been compiled by Verdi or compiled by VCS for Verdi is stored in the Verdi
Knowledge Database (KDB). A Verdi KDB has all of the information necessary to create tagging
information for vi and emacs. It contains lists of all identifiers complete with scope and file location.
Question: How is this information extracted and re-format it into the vi and emacs tagging formats
described above? Answer: use the VC Apps Native Programming Interface which allows users access
to KDB information via ‘C’ programs or tcl scripts from within a Verdi session.

Synopsys supplies ample documentation for its VC Apps in VC Apps Toolbox User Guide and the
Native Programming Interface (NPI) in its VC Apps Native Programming Interface (NPI) documents.

2.2.1 Verdi Access Using tcl

The NPI provides an interface layer to let users access the KDB contained in the Verdi®
Automated Debug Platform.

Users can work with the NPI models through two kinds of interfaces, one is the Tcl command
interface and the other is the C interface. Compared to the C interface, Tcl commands provided
by the NPI model can be played in both batch mode (through a command file) and interactive
mode (through the Tcl console) when the Verdi executable is invoked. However, since Tcl is an
interpreted language, the Tcl command interface will have worse performance due to the Tcl
interpreter effort. It is recommended that you use the C interface if the application has
stringent performance requirements.

Commonly used VC apps are pre-packaged in the installation package of the Verdi platform.
Users can access these VC Apps from the VC Apps Toolbox area from the Verdi GUI. The VC
Apps in the VC Apps toolbox are developed and tested by Synopsys. Users can also access the
original source code of some Apps in the Toolbox and customize it to fit different requirements.
VC Apps toolbox provides flexibility that allows users to add in house tools into VC Apps
Toolbox group of .

The NPI Language Model treats hardware description language (SystemVerilog/VHDL)
constructs as objects, and the NPI Language Model routines provide ways to locate any specific
object or type of object within the design loaded from Verdi. An Application Programming
Interface (API) within Verdi provides access to these HDL constructs.

To create vi and emacs tags databases a custom tcl script, tags.tcl, was written. tags.tcl traverses
the KDB, extracts tag information for the relevant constructs and outputs the information to an
intermediate raw data file which is converted to vi and emacs tag data bases by additional
scripts. The tags.tcl script is run within Verdi on a previously compiled database that was
opened by Verdi, or on an RTL compilation done by Verdi.

2.2.2 tags.tcl

The tags.tcl script is actually quite simple – all of the complexity of the task is hidden in the API.
It traverses the design hierarchy where it identifies all module types and then traverses the
hierarchy a second time and extracts all of the identifiers contained in these module types.

This first pass through the code is necessary because when a design hierarchy is traversed via

SNUG 2017

Page 9 Using Verdi to Generate vi and emacs Tagging Databases

the Verdi API all modules are searched for identifiers. If a design contains multiple instances of
the same module adding the same identifier to the tagging database for each instance would
create unnecessary duplicate tag entries. What a tagger should do is create tags per module
type, not per module instance. Consider the following figure.

top U_TOP

mod U_MOD_A mod U_MOD_B

reg [7:0] data;

reg vld;

reg [7:0] data;

reg vld;

Figure 5. Extracting Tags From Only One Instance

In this design module top contains two instances of mod. When creating a tag database adding
two entries for data and vld, one for each instance of mod would be redundant. Only a single
entry for data and vld, as contained in the definition of mod, should be added to the database.

tags.tcl first pass through the design hierarchy creates a list of all module types and records a
single instance name for each type. On the second pass through the hierarchy only identifiers
from the instance that matches the recorded name are saved in the tag database. In the above
figure tags.tcl would pass through the design hierarchy and identify two module types – top and
mod – and record the instance names U_TOP and either U_MOD_A or U_MOD_B. On the second
pass only identifiers for U_TOP and U_MOD_A or U_MOD_B would be recorded. Which U_MOD is
recorded is arbitrary and depends on the Verdi’s tree traversal.

The API function npi_hier_tree_trv is used to traverse the design object hierarchy tree (from the
specified scope) and execute callback functions registered by the user for various object types
when they are found in the tree. The design object hierarchy tree is the data structure that
Verdi uses to hold design information. Call backs for objects are registered with the API
function npi_hier_tree_trv_register_cb. Callbacks are user defined functions that are called when
tree traversal locates object types of interest. npi_hier_tree_trv_reset_cb is used to reset
callbacks. These functions are all documented in the VC Apps Native Programming Interface
(NPI) document.

Consider this code fragment from tags.tcl:

SNUG 2017

Page 10 Using Verdi to Generate vi and emacs Tagging Databases

 Figure 6. First Tree Traveral – Searching for Modules

Associated arrays items and idents are declared and included (as members of the call back
list cbList) as arguments to the API npi_hier_tree_trv_register_cb function along with
npiItemsCb, the name of the call back function to call when an object of type of interest is
found during design hierarchy tree traversal. Object types of interest (items) include
modules, packages, programs and class definitions. As previously mentioned on this first
pass throught the hierarchy instances of modules are recorded and their identifiers are
captured. On this same pass, identifiers in packages and programs are also captured since
they are compilable objects with only one instance. Furthermore the definitions of all
classes are recorded. Identiers in class definitions are not recorded so as not to create too
many duplicate identifiers. A tree hierarchy traversal is requested with the API call to
npi_hier_tree_trv.

The npiItemCb call back function is describe in following code segment.

SNUG 2017

Page 11 Using Verdi to Generate vi and emacs Tagging Databases

Figure 7. npiModule Callback

The npiItemCb callback function is called by the tree traversal API every time an
item of interest is encountered during design tree traversal. npiItemCb, using other
NPI API calls, identifies the name of the item definition, the file name and line
number of the file that contains the item’s definition and the full scope name of the
instance of the item found. It then adds the item’s definition to the items associated
array (line 39) if this item is not already a member of the array. In addition all of the
identifiers found in this item are added to the ident array on line 40.

In this first pass all items have been identified and all the identifiers of modules,
programs and packages recorded.

The second pass through the design hierarchy tree collects all of the remaining
identifiers that are to be tagged. The following abbreviated code segment shows
just a few of the identifier types (ArrayNet, ArrayTypespec, etc) that are registered
to the generic call back function npiCb.

SNUG 2017

Page 12 Using Verdi to Generate vi and emacs Tagging Databases

 Figure 8. Second Tree Traveral – Searching for Identifiers

The generic call back function npiCb is called by the tree traversal API every time
one of many objects registered for callback is encountered during the second design
tree traversal. npiCb, using other NPI API calls, identifies the name of the object, the
file name and line number of the file that contains the object and the full scope name
of the object. It then adds the identifier to the array of identifiers only if the scope
name of the object matches the scope name of one of the items in the list of items
contained in the associated list items captured on the first pass. This is the check to
ensure that the identifiers of only modules definitions are tagged, not the identifiers
of all instances.

 NOTE: Verdi provides tags.tcl the absolute location of the files it used to compile

the design and it is these paths that are used to generate the tags database. If
the location of files changes between the time the design was compiled and
when the tag database is to be used, the tagger will not be able to locate the file.
If this is the case tags can simply be regenerated or additional scripting may be
used to correct tag database file paths.

As can be seen in the following code fragment, information is gathered about the
object in lines 70 to 79. A check is then made to see if the object is a package, class
or program and if it is then the identifier information is added to the identifier array
ident. All other objects are added to the ident array only if the scope they belong to
is one of the object scopes gathered on the first pass (this check being done on line
97).

SNUG 2017

Page 13 Using Verdi to Generate vi and emacs Tagging Databases

Figure 9. Generic Identifier Call Back

Now that all identifiers have been found the vi tags file can be generated as per the vi tags file
format detailed earlier. As can be seen in the next code segment, the array containing all identifiers
is flattened into a tcl list (line 251) and the list is then sorted by identifier (line 254) and output to
the tags file. Because the format of emacs tags files are more complex, a list of all possible tagged
source files is generated while the vi tags file is generated.

SNUG 2017

Page 14 Using Verdi to Generate vi and emacs Tagging Databases

Figure 10. Generating the vi tags

Once the vi tag file has been generated the emacs tag file is generated. All of the files in the list
generated during vi tag file generation are opened (line 285) and the byte count to each line is
calculated and stored in the byteCounts array. This information is then used in the loop at line 313
to generate the “per tag file” identifier information required by emacs. One this “per tag file”
information is generated it is written out to the emacs tag file.

SNUG 2017

Page 15 Using Verdi to Generate vi and emacs Tagging Databases

Figure 11. Generating the emacs tags

2.2.3 Recognised SystemVerilog Identifiers

The following is a list of identifiers generated by tags.tcl as of Verdi 2017.03. These are the
identifier types that are registered for callback during tree traversal. Dynamic objects such as
Classes and verification construct such as Programs and Virtual Interface Variables are not

SNUG 2017

Page 16 Using Verdi to Generate vi and emacs Tagging Databases

recognized prior to this release.

Table 1. Recognised SystemVerilog Identifiers

ArrayNet ArrayTypespec ArrayVar BitTypespec

BitVar ByteTypespec ByteVar ClassDefn

ClassObj ClassTypespec ClassVar Constant

EnumNet EnumTypespec EnumVar GenVar

GenScope IODecl IntTypespec IntVar

IntegerNet IntegerTypespec IntegerVar Interface

InterfaceArray LogicTypespec LongIntTypespec LongIntVar

MethodFuncCall Modport Module ModuleArray

Net NetBit Package PackedArrayNet

PackedArrayTypespec PackedArrayVar Parameter ParameterBit

Port Program RealTypespec RealVar

RefObj Reg ShortIntTypespec ShortIntVar

ShortRealTypespec ShortRealVar StringTypespec StructNet

StructTypespec StructVar Task TaskCall

TypeParameter TypePattern TypespecMember UnionTypespec

UnionVar VirtualInterfaceVar

3. Running the tags.tcl Script

tcl scripts (VC apps) can be run from within the Verdi GUI or in batch mode. Running tcl scripts
from within the Verdi GUI is done via the TCL Command Entry dialog.

To run a script first start Verdi and load a design. Then open the Command Entry dialog by
selecting Tools->Preferences from the Verdi GUI main menu. From the Preferences dialog box click
the Enable TCL Command Entry radio button. The Command Entry dialog will appear.

SNUG 2017

Page 17 Using Verdi to Generate vi and emacs Tagging Databases

Figure 12. Opening Verdi’s TCL Command Entry Dialog Box

Scripts can be sourced from within this dialog. Indeed this is a full tcl interpreter and any tcl
command may be issued in this dialog. To run the tags.tcl script simply source it in this dialog.

To run a tcl script in Verdi in batch mode from the command line use the –play option:

 verdi –nogui –nologo –q –f design.f –play tags.tcl > /dev/null

The –f option directs Verdi to a manifest file containing a list of design files and any other options
necessary to compile the design. Optionally Verdi could be directed to open a precompiled
database. The –nogui, –nologo –q options will keep the output “quiet” and re-direct all error output
to devnull to squelch console error messages. These options are not necessary and may be
removed if the user wants all feedback from the run. Furthermore, this command could be run
from a makefile or a cron job to routinely generate tagging information or run when files are
submitted into a shared storage location such as a version control system.

4. Using Tags

Once vi and emacs tag databases have been created for a design both editors must be configured to
know where to find the database. Additionally custom key bindings can be set up that match users
preferred interaction with the editor.

4.1.1 vi

To configure vi to use a tagging database the ‘tags’ option must be set. The ‘tags’ option is a
comma separated list of file names that is searched for tags. Since the tags script generates a vi
tag database with the file name tags the following command must be issued in normal mode to
set the ‘tags’ option when editing files that have been included in a SystemVerilog tag database:

 :map tags=tags

Alternativly the ‘tags’ option can be permanently set by putting this line in the vi configuration
file .vimrc.

There are many ways to jump to a tag in vi. The simplest is the normal mode command

 :tags {ident}

Where {ident} is the identifier to jump to and is manually typed in by the user. Using the
tags command to jump to a tag does not require the cursor to be on the identifier since it is
included in the command.

Not having to type the identifier to jump to is very convienent. The following mouse and
keyboard control commands:

 <C-LeftMouse>

 CTRL-]

SNUG 2017

Page 18 Using Verdi to Generate vi and emacs Tagging Databases

will both jump to the identifier under the cursor. When there are multiple matching tags for
the identifier vi will jump to the first one or provide a numbered matchlist to allow the user to
select which tag to jump to.

When vi jumps to a tag it records the current location in the tag stack. To return from a jumped
location entering this command in normal mode:

 :pop

will jump back to the last location on the stack. Similarily the following mouse and keyboard
control commands will jump back:

 <C-RightMouse>

 CTRL-T

The tag stack can be examined with this command:

 :tags

The output of ":tags" looks like this:

 # TO tag FROM line in file/text

 1 1 mod_a 11 top.v

 > 2 2 PKG 5 pkg.v

So as to keep the current buffer open to know what you were editing prior to a jump, the jump
can be opened in a separate window using:

 CTRL-W CTRL-]

The jump can also open the tag in a ‘preview’ window, leaving the cursor in the current file:

 CTRL-W CTRL-}

If there are multiple matching tags vi will offer a menu of matches for the user to select from. In
this example dat is defined in two packages.

SNUG 2017

Page 19 Using Verdi to Generate vi and emacs Tagging Databases

Figure 13. Multiple Matching Tags Example

When an attempt to jump from dat on line 15 is made the user is queried as to which tag is to be
jumped to.

Figure 14. Multiple Matching Tags Menu

4.1.1 emacs

To jump to a tag in emacs use:

 Meta .

And to return from a jump

 Meta *

All of the capability shown in the vi section above is available in emacs.

4.1.2 Shortcoming and Limitations

There often are multiple hits for some tags. Take a clock net such as i_clk for example. This net
is usually defined port in top level module then re-defined in all lower level modules. If a jump
request is issued for this net somewhere in the hierarchy editors will either jump to the first
matching tag in a list of matching tags or present the user a match list and ask the user to select
which tag to jump to. While sometimes irritating, this behavior is to be expected. An editor’s
tagging system has no notion of the scope of the design and therefore cannot be expected to

SNUG 2017

Page 20 Using Verdi to Generate vi and emacs Tagging Databases

identify what the relivent definition of an identifier should be. In the case of example i_clk this
is usually not an issue since all definitions of it would likely be the same. However, for an
identifier name that is reused in multiple places in the design where each usage has a unique
definition, it is important for the user to carefully examine the presented list of matches and
ensure that the definition jumped to maches the identifier usage at the jump point.

Regarding Package Scope Resolution. vi and emacs typically interprete the colon character as a
tag separator. This means that the scope resolution operator ‘::’ is ignored when determining
what tag to jump to. For example, in the case of a parameter definition that includes scope (e.g.
“PackageName::Parameter"), both editors will select either the “PackageName” or the
“Parameter” (depending on which word the cursor is positioned) as the tag and jump to the
appropriate definition. If there are multiple ”Packages” with the same “Parameter” and the
cursor is placed on a “Parameter” identifier and a jump is requested, then either the first
matching tag in the tag database is jumped to or the designer is presented a list of matching
tags. At this point it us up the designer to manually determine which tag to jump to by
identifying which tag hit would likely match the “PackageName” that preceeds the “Parameter”.
It is recommended in this type of scenario that the designer jump to the “PackageName” then
perform a forward search for the “Parameter” of interest. In this way the designer will always
find the correct “Parameter”. Even if vi or emacs were set up to recognize the scope resolution
operator, the tag database generated by the tags.tcl script does not include tags with scope.

Some editors and their plugins will attempt to tag all in buffer files. To do this the editors need
access to a fast executable tagger such as ctags. Unfortunately compiling a design and
generateing its tags in Verdi is too slow to support this.

Editors need to know the location of the tags database for the design they are working on; this,
for example, is set by the ‘tags’ option in vi for and may either be relative or absolute. Managing
the location of the tags database and the configuration editors and a full discussion of this issue
is beyond the scope of this paper. One possible setup would be to store tag databases at the
‘root’ of a design tree where the top level module and manifest are located. Managing tag
databases for multiple designs that share this same directory tree would be done with separate
design check-outs from a version control system that takes advantage of environment variables
to identify the active project.

5. Future Work

Using tcl in Verdi is slow given its interpreted nature. It would be straight forward to convert the
tags.tcl script to ‘C’ to improve performance and use the Verdi ‘C’ interface to generate the tags.
Documentation is available from Synopsys regarding VC development in ‘C’ in the VC Apps Toolbox
User Guide and the Native Programming Interface (NPI) in its VC Apps Native Programming Interface
(NPI) documents.

If a reduced set of tags was desired making the list of identifier types to tag programmable via a
config file would be an easy addition.

Adding exuberant ctags’ additional tagging information to the vi ctags database would be simple
addition given that all of the relevant identifier type information is available in the KDB if a user
desired to have this information to support some of the more popular vim tag exploration tools.

SNUG 2017

Page 21 Using Verdi to Generate vi and emacs Tagging Databases

6. Conclusions

Navigating todays large System on Chip designs is more difficult than ever given the scope and
magnitude of the RTL that generates them. While venerable editors such as vi and emacs are still up
to the task of day to day editing tasks as are, to a certain extent ctags and etags, they can lack the
capability of modern day IDEs to assist designers in locating all variable declarations, structure
definitions, module definitions, tasks, functions, packages, parameters and far flung logic libraries
and memories. Furthermore, not knowing how a design was conditionally compiled can make
searching for these items even harder.

While find and grep may have been the go to approach most designers have taken to navigate
unknown designs, designers now have a more powerful too. By taking advantage of Synopsys’ VC
Apps Native Programming Interface (NPI) the tags.tcl script unlocks vital information stored in the
Verdi Knowledge Database and allows those designers still using legacy editing platforms to
unleash the power of code tagging.

