
SpyGlass® DFT
Submethodology (for GuideWare 
2017.12)

N-2017.12-SP2, June 2018



Copyright Notice and Proprietary Information
©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated 
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the 
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated 
documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the 
United States of America. Disclosure to nationals of other countries contrary to United 
States law is prohibited. It is the reader's responsibility to determine the applicable 
regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth 
at http://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience 
only. Synopsys does not endorse and is not responsible for such websites and their 
practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com



Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on 
this publication. Please provide specific feedback and, if possible, attach a snapshot. 
Send your feedback to spyglass_support@synopsys.com.

mailto:spyglass_support@synopsys.com




Contents

Preface..........................................................................................9
About This Book ...................................................................................... 9
Contents of This Book ........................................................................... 10
Typographical Conventions ................................................................... 11

The Need for DFT-Optimized Design............................................13
The Need for DFT-Optimized Design...................................................... 13

Introduction........................................................................................14
Objective........................................................................................14
Tool Versions...................................................................................14
References .....................................................................................14

Document Overview.............................................................................. 15
GuideWare Reference Methodology....................................................... 16

Prerequisites.......................................................................................16
Designing for Test ................................................................................. 17

Scan Flip-flops and Chains ....................................................................17
Latch Transparency..............................................................................18
Capture..............................................................................................19

Performing DFT Analysis using SpyGlass DFT........................................ 21
DFT Setup ..........................................................................................22

DFT Setup Manager .........................................................................22
Create Constraints for Bidirectional Ports ............................................26

Steps to maximize fault coverage ..........................................................27
Achieve Scannability ........................................................................27
Make Latches Transparent.................................................................29
Compliance to DFT Best Practices ......................................................30
Preparing design for BIST .................................................................31
Adding Testpoints ............................................................................31
Verifying Scan Chains.......................................................................34
Verifying Test Signal Connections in Full-chip Designs ...........................35
Create test Constraints for Full Chip ...................................................36
Connection Verification Procedure ......................................................38

GuideWare Methodology for DFT............................................................40
Step-by-step Solution ........................................................................... 43
v
Synopsys, Inc.



Setup for DFT (goal name = dft_setup) ..................................................43
Create necessary clock Constraints.....................................................46
Create necessary test_mode Constraints.............................................47

Achieve Scannability (goal name = dft_scan_ready) .................................47
Clock_11 Debug ..............................................................................48
Diagnose_testclock ..........................................................................49
Info_testclock .................................................................................50
Async_07 Debug..............................................................................50
Async_08 debug ..............................................................................51
Diagnose_testmode .........................................................................51
Info_testmode.................................................................................52
Info_scanwrap debug .......................................................................52
Info_noscan debug ..........................................................................52
Info_inferredNoscan debug ...............................................................52
Viewing the estimate of fault coverage of the design.............................53

Ensure Compliance to DFT Best Practices (goal name = dft_best_practice) ..57
Review the stuck_at_coverage_audit report.........................................57
Make flip-flops scannable ..................................................................59
Make Latches Transparent.................................................................59
Scan-wrap black boxes .....................................................................59
Combinational Loops Made Transparent ..............................................60
Testmode/Tied pins made controllable ................................................60
Hanging nets made controllable .........................................................61
Tristate nets made observable ...........................................................61
The force_ta nets and test_point constraint pins made testable..............61
The no-scan flip-flops made scannable................................................62
Using the Coverage_Audit report to ensure test operation .....................62
Async_02 violations .........................................................................62
Async_11 violations .........................................................................63
 Clock_04 violations .........................................................................63
Clock_08 violations ..........................................................................64
Clock_16 violations ..........................................................................64
Clock_17 violations ..........................................................................65
Clock_21 violations ..........................................................................65
Clock_27 violations ..........................................................................65
Clock_28 violations ..........................................................................66
Scan_07 violations...........................................................................66
Scan_22 violations...........................................................................66
Topology_03 violations .....................................................................67
Topology_05 violations .....................................................................67
Topology_13 violations .....................................................................67
vi
Synopsys, Inc.



Tristate_06 violations .......................................................................67
Achieve BIST Readiness (goal name = dft_bist_ready) .............................68
Adding Testpoints (goal name = dft_test_points) .....................................69

TA_09 debug ..................................................................................69
Validating Scan Chains (goal name = dft_scan_chain) ..............................70

Scan_22.........................................................................................70
Scan_24.........................................................................................70
Scan_25.........................................................................................70
Scan_26.........................................................................................70
Info_scanchain................................................................................71

Verifying Test Signal Connections in Full-chip Designs (goal name = 
dft_block_check) .................................................................................71

Create test SGDC for Full-chip ...........................................................72
Subblock Check (goal name = dft_block_check) ......................................72
Creating and Validating an Abstract Model for a Block (goal names = 
dft_abstract, dft_abstract_validate) .......................................................73
Using Autofix/Selective Autofix ..............................................................74

Appendix A..................................................................................75
vii
Synopsys, Inc.



viii
Synopsys, Inc.



Preface
About This Book
The SpyGlass® DFT methodology guide describes the flow for using the 
DFT methodology.
9
Synopsys, Inc.



Contents of This Book

Preface
Contents of This Book
The SpyGlass DFT methodology guide has the following sections:

Section Description
The Need for DFT-Optimized Design The need for DFT-optimized design
10
Synopsys, Inc.



Typographical Conventions

Preface
Typographical Conventions
This document uses the following typographical conventions:

The following table describes the syntax used in this document:

To indicate Convention Used
Program code OUT <= IN;

Object names OUT

Variables representing 
objects names

<sig-name>

Message Active low signal name '<sig-name>' must end 
with _X.

Message location OUT <= IN;

Reworked example 
with message removed

OUT_X <= IN;

Important Information NOTE: This rule...

Syntax Description
[  ] (Square brackets) An optional entry
{ } (Curly braces) An entry that can be specified once or multiple 

times
| (Vertical bar) A list of choices out of which you can choose 

one

... (Horizontal 
ellipsis)

Other options that you can specify
11
Synopsys, Inc.



Typographical Conventions

Preface
12
Synopsys, Inc.



The Need for DFT-
Optimized Design
The Need for DFT-Optimized Design
Manufacturing test is performed by patterns automatically generated by 
ATPG (Automatic Test Pattern Generation) tools. To operate effectively, 
these tools require that the circuits be correctly designed for testing. This 
document and the corresponding SpyGlass DFT software directly address 
this issue.
13
Synopsys, Inc.



The Need for DFT-Optimized Design

The Need for DFT-Optimized Design
Introduction

Objective

The objective of this document is to describe a method to run SpyGlass 
DFT that focuses on goals that are well matched with the requirements for 
full scan testability.

Tool Versions

 SPYGLASS VERSION: N-2017.12-SP2

 DFT VERSION: N-2017.12-SP2

 GuideWare: 2017.12

References

 SpyGlass DFT User Guide

 Design Read Methodology Document
14
Synopsys, Inc.



Document Overview

The Need for DFT-Optimized Design
Document Overview
This document is organized as follows:
 The GuideWare Reference Methodology section describes the Guideware 

method as well as prerequisites for applying GuideWare to DFT
 The Designing for Test section describes full scan design

 The Performing DFT Analysis using SpyGlass DFT section describes how the 
rules built into SpyGlass addresses the requirements of full scan design

 The Step-by-step Solution section describes a step by step description for 
using GuideWare to meet the specific goals for achieving high fault 
coverage.
15
Synopsys, Inc.



GuideWare Reference Methodology

The Need for DFT-Optimized Design
GuideWare Reference Methodology
GuideWare Reference Methodology groups SpyGlass rules selected from 
various SpyGlass product areas (including Lint, CDC, DFT, Power and 
Constraints) into goals aligned with chip development process and 
validating them for high impact. The GuideWare Reference Methodology 
provides a jumpstart for design groups with SpyGlass goals readily usable 
out-of-the-box at various phases of IC design flow (RTL, IP and Chip 
Integration design phases). The GuideWare Reference Methodology can be 
configured to map to customer specific design style and handoff 
requirements. For more details of GuideWare Reference Methodology, 
please refer to the documentation as part of this release installation.

Prerequisites

You are expected to have basic knowledge of SpyGlass operations. 

SpyGlass DFT requires a clean design read. Please refer to the SpyGlass 
Design Read-In Methodology guide for details.

The RTL also must be “lint” clean before analyzing for DFT. This can best be 
done by using the GuideWare methodology. Please refer to the GuideWare 
User Guide for details. However, if the user customizes these into different 
local goals then they should ensure that all goals taken together include 
those goals.
16
Synopsys, Inc.



Designing for Test

The Need for DFT-Optimized Design
Designing for Test
In order to understand the Guideware goals for test, it is necessary to 
understand the basic design for test strategy followed by the most 
electronic companies.

The ATPG tools in common used today are much more efficient for 
processing combinational circuits than for sequential circuits. As a result, 
the primary DFT approach commonly used is to implement full scan on the 
design. Key objectives of this design method are: 
 to allow any internal state necessary for testing to be achieved by 

forming shift registers called scan chains
 to force latch enables to be active so that the latch may be treated as a 

buffer
 to allow easy control of clocks so test results at internal nodes can be 

captured

Scan Flip-flops and Chains

A typical scan flip-flop is shown in FIGURE 1. Scan Flip-flop. Scan flip-flops 
are connected (see FIGURE 2. Scan Chain Segment) so that shift registers are 
formed when the “SE” pin is set to 1.

A critical aspect of this shifting action is that shift clocks must reach the 
scan flip-flops and the sets and resets must remain inactive regardless of 
circuit state. A major part of SpyGlass DFT processing will be to achieve 
these requirements.
17
Synopsys, Inc.



Designing for Test

The Need for DFT-Optimized Design
FIGURE 1. Scan Flip-flop

FIGURE 2. Scan Chain Segment

Latch Transparency

Latches are state elements that can defeat combinational ATPG tools. Tests 
for circuits such as shown in FIGURE 3. Latch Transparency, may require 
signal propagation through latches. The appropriate DFT method is to 
18
Synopsys, Inc.



Designing for Test

The Need for DFT-Optimized Design
design the latch enables so that the latch is forced active in capture mode. 
In this way, the latch may be treated as a simple buffer by ATPG tools.

FIGURE 3. Latch Transparency

Capture

The waveforms in FIGURE 4. Waveforms for One ATPG Vector, are typically 
used to shift tests into a circuit and to capture test data using these chains. 
To perform the tests, the scan multiplexers, see FIGURE 1. Scan Flip-flop, 
must be switched back to 0 so that the test results can be captured for 
scan-out. The capture clock must be operated in the system mode and 
therefore the circuit must be designed to guarantee that the capture pulses 
reach the scan flip-flops regardless of the scan-in state.
19
Synopsys, Inc.



Designing for Test

The Need for DFT-Optimized Design
FIGURE 4. Waveforms for One ATPG Vector

The remaining sections of this document will describe how to use SpyGlass 
DFT for these functions.
20
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Performing DFT Analysis using SpyGlass DFT
This section of the document describes the use of SpyGlass DFT for:
 Block-level designs (see the Creating and Validating an Abstract Model for a 

Block (goal names = dft_abstract, dft_abstract_validate) section)
 Verifying scan chains in gate-level netlist (see Verifying Scan Chains 

section)
 Verifying test signal connections in full-chip designs (see Verifying Test 

Signal Connections in Full-chip Designs section)

The preferred flow is illustrated in FIGURE 5. Block-level Flow. Processing a 
design in the order shown in the illustration helps to reduce the time to 
complete the job, the number of test points (if any) and unnecessary 
interactions with the tool.

FIGURE 5. Block-level Flow
21
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
DFT Setup

After completing the design read, use the reports generated by SpyGlass to 
create a test setup environment. 

This section explains the following topics:
 DFT Setup Manager

 Create Constraints for Bidirectional Ports

DFT Setup Manager

The DFT Setup Manager can be used to generate the necessary DFT 
constraints for a design. The Setup Manager is accessible from the 
Console’s GUI interface via the dft_setup goal. The setup manager 
guides you through the various steps that help identify the following:
 Black box resolution

 Test clocks

 Asynchronous set/reset signals

 Test modes

 PLL and clock shapers

 Clock gating cells

 Setting of no_scan, scan_wrap, and so on

For general information on Console Setup Managers and the Common 
Design Setup, please refer to the SpyGlass Explorer User Guide.

The following sections detail the different test related constraints that are 
relevant to run DFT specific goals:
 Define Initial Testclocks

 Define Initial Testmodes

 Use bypass Constraint for Modules with Internal bypass Logic

 Black Boxes— scan_wrap

Define Initial Testclocks

The information generated by DFT setup includes root-level pins that may 
22
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
be system clocks. It often includes pins that are clock enables, so generally 
the list cannot be used directly. If some of the pins in this list are 
recognized as testclocks, they can be used as testclock constraints for 
SpyGlass DFT.

For example, if sysClockA shown in the simple example in FIGURE 6. System 
Clock Example is also a test clock, then the constraint for use by DFT is as 
follows:

clock –name sysClockA -testclock

FIGURE 6. System Clock Example

DFT Setup manager automatically identifies system clocks, and allows user 
to mark them as test clocks as applicable.

Define Initial Testmodes

The design setup also includes the pins that may be system set or reset 
pins. Since controlling asynchronous pins is a key aspect of scan design, 
this list may be used as a starting point in creating test_mode constraints.

Scan design requires that flip-flop sets and resets must be disabled during 
scan shifting. For example, in FIGURE 7. System Reset Example, the signal 
resetDisable would be disabled in test mode by the following constraint:

test_mode –name resetDisable –value 1
23
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
FIGURE 7. System Reset Example

DFT Setup Manager can automatically identify all set/reset signals, and 
derive test_mode constraints based on those signals – to hold them off 
during scan-shift. Through the GUI File editor, user can add any additional 
test constraints, or modify the automatically generated test constraints.

Use bypass Constraint for Modules with Internal bypass Logic

Some blocks, such as memories or complex IP blocks with BIST circuitry, 
may be designed with "bypass" logic to provide a connection path from 
block inputs directly to block outputs. Often RTL models for such blocks are 
not available. The module_bypass constraint can be used to properly 
handle these blocks within a larger design while running SpyGlass DFT. 

For example, in the design shown in FIGURE 8. Module with bypass, when the 
signal “By-pass” = 1 then the Data-in port is directly connected to the 
“Data-out” port. From a DFT point of view, the Data-out port can be 
controlled by Data-in and the Data-in port can be observed by the Data-out 
if a logical one is applied to By-pass. The module_bypass constraint can be 
used as follows:

module_bypass –name modBP –bpin By-pass –value 1 –iport Data-
in –oport Data-out

Refer to the DFT User Guide section SpyGlass DFT Constraints Currently 
Defined” for details on using this constraint.
24
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Using the module_bypass constraint will provide a more accurate black box 
model and more accurate SpyGlass DFT results.

FIGURE 8. Module with bypass

Black Boxes— scan_wrap

DFT Setup Manager reports all the black box modules in the design. If any 
black box module in the design is known to be designed with internal 
boundary scan chains, then the Setup Manager allows the user to identify 
and create scan_wrap constraints for such modules. For example:

scan_wrap –name IntRingBox

(See DFT User Guide section “SpyGlass DFT Constraints Currently Defined” 
for details on using the scan_wrap constraint.)

NOTE: DFT Setup Manager currently only allows setting of scan_wrap constraints on 
modules, and not on individual instances. To set this constraint on individual 
instances, you can use the GUI file editor to add or modify these constraints in the 
Setup Manager.
25
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Create Constraints for Bidirectional Ports

If the design has bidirectional IO ports that are shared with test control 
signals, then constraints must be defined to configure these ports so that 
signals at the root level do propagate into the design. Use the 
Diagnose_testclock and Diagnose_testmode rules to verify that the 
testclocks and the test_mode constraints penetrate into the design without 
bus contention. Test_mode constraints used for this purpose should be 
declared for both scanshift and capture mode. 

For example in FIGURE 9. Simple Bidirectional Connection, in order to use ctrl 
as a testclock, the enaOut must have a value that tri-states the buffer. This 
means that the test_mode constraint(s) must be written to ensure that 
enaOut is 0 (assuming an active high tristate buffer) for both scanshift and 
capture.

test_mode –name enaOut –value 0

FIGURE 9. Simple Bidirectional Connection
26
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Steps to maximize fault coverage
Once the design constraints are in place it is useful to audit the design for 
testability of the design. At this step one may find out the current test 
status and possible steps that can be taken to improve the fault coverage.

This section explains the following topics:
 Achieve Scannability

 Make Latches Transparent

 Compliance to DFT Best Practices

 Preparing design for BIST

 Adding Testpoints

 Verifying Scan Chains

 Verifying Test Signal Connections in Full-chip Designs

Achieve Scannability

The objective of this step is to refine the list (see Section Define Initial 
Testclocks and Define Initial Testmodes) of clocks and testmode signals. This 
is an important consideration, since successful SpyGlass DFT analysis 
requires use of both logic simulation and testability analysis. Both of these 
calculations require device representations at the generic gate level. These 
analyses critically depend on having testclocks and test_mode constraints. 
(See SpyGlass DFT User Guide section “Scannability and Testability.”)

Testclocks for scan

Test logic using scan design techniques requires operating the circuit in a 
mode different from functional mode. System clocks that are internally 
generated must be controlled in a well-defined way when test vectors are 
applied. FIGURE 10. Derived Clock with bypass shows a case where sysClk 
should be declared as a testclock and Clk_bypass should be declared as a 
testmode signal with a value that selects sysClk. 

clock –name sysClk –testclock
test_mode –name Clk_bypass –value 1
27
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
FIGURE 10. Derived Clock with bypass

FIGURE 11. PLL bypass shows a PLL that has been designed with a by-pass. 
In such cases, the pllBypass should be declared as a test_mode with value 
1 and sysClk should be declared as a testclock.

clock –name sysClk –testclock
test_mode –name pllBypass –value 1

FIGURE 11. PLL bypass

The dft_scan_ready goal is designed to detect and diagnose testclock 
28
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
issues.

Asynchronous Sets and Resets for Scan

The asynchronous sets and resets must also be controlled by well-defined 
root-level procedures. FIGURE 12. Reset bypass example shows an example 
of derived asynchronous reset logic that feeds an active low reset pin that 
has been bypassed with a resetDisable signal to force the reset to the 
inactive state during scan shifting. In this case, resetDisable should be 
declared in a test_mode constraint:

test_mode –name resetDisable –value 1 –scanshift

FIGURE 12. Reset bypass example

The dft_scan_ready goal is designed to detect and diagnose flip-flop 
set and reset issues.

Make Latches Transparent

As mentioned earlier, ATPG tools are usually run in combinational mode so 
that the flip-flop outputs can be easily controlled and the flip-flop inputs 
can be easily observed. As a result, from an ATPG point of view, the scan 
flip-flop outputs are treated as if they were primary inputs and the scan 
flip-flop inputs are treated as if they were primary outputs. 

Latches are also sequential devices and therefore pose a problem for 
combinational ATPG. Instead of making latches scannable, latch enables 
29
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
are designed to be forced active during the capture phase so that ATPG 
tools may treat latches as simple buffers. If this condition is not satisfied, 
any logic that requires such a latch or any logic that only feeds such a latch 
will not be testable and coverage will be compromised.

FIGURE 13. DFT Logic to Force Latch Transparency shows an example of a latch 
with an OR gate added to allow forcing of latch transparency. In this case, 
the following constraint could be used:

test_mode –name forceTrans –value 1 –capture

The test_mode option “-capture” is used because the latch is only required 
to be transparent for ATPG. Latches are transparent for ATPG when their 
enable pin is active in the “off” state of the clock. Latch enables can be 
“don’t care” during scan shifting.

FIGURE 13. DFT Logic to Force Latch Transparency

The dft_best_practice goal contains several rules designed to detect 
and diagnose latch enable issues.

Compliance to DFT Best Practices

The following is a list of various structures that block ATPG tools from 
achieving high coverage:
 Test clock also used as data

 Asynchronous combinatorial loop that is not broken during testmode 

 Test clock also drives the set/reset pin of any flip-flop
30
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
 Tri-state bus enables are not ‘one-hot’ encoded

 Flip-flops have large fan-in cones

Designers can avoid these pitfalls by discovering such structural issues at 
the RTL coding stage. They may check their designs for best DFT practices 
even without testmode setup knowledge.

Preparing design for BIST

A design is BIST ready when no unknown values (“X”) are captured in the 
scannable flip-flops of the design. This is because in BIST (Built-In-Self-
Test) designs, the scan output is compressed into a signature register, and 
capturing unknown values will corrupt the signature. This can also be the 
case when ATPG Compression is used, so you should consider running this 
goal also for designs using such Compression techniques. This can be 
achieved by removing all sources of X-propagation.

Adding Testpoints

If, after satisfying all prior steps, the coverage is not satisfactory, consider 
adding test points to the design. A test for a specific fault requires that the 
fault be both controllable and observable. Therefore, test coverage can be 
potentially improved by Improving Observability or by Improving Controllability. 
This can be achieved by adding observe or control testpoints.

The DFT rule TA_09 produces a coverage report that can be used as a 
guide for test point selection. The final coverage listed in that report will be 
achieved if all the testpoints are used. The coverage reported at an 
intermediate point will be achieved if all testpoints listed up to that position 
in the report are used. If a non-consecutive subset of the testpoints is 
selected from the TA_09 report, then the resulting coverage may be 
established by adding testpoint constraints for just the selected locations to 
the sgdc file and rerunning.

TA_09 also produces an .sgdc with testpoint constraints for all nodes listed 
in the coverage report. The coverage for any subset of testpoints can be 
obtained by using testpoint constraints for any subset of testpoint locations 
and rerunning SpyGlass DFT.
31
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Improving Observability

FIGURE 14. Unobservable Net illustrates a block of logic whose output net is 
unobservable even though it fans out to multiple places. The lack of 
observability may be due to black boxes, IPs designed without scan, 
blocked paths or a variety of other causes.

FIGURE 14. Unobservable Net

FIGURE 15. Observation Testpoint shows a scannable flip-flop added to 
provide observability to an existing unobservable net.

FIGURE 15. Observation Testpoint
32
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Improving Controllability

An example of a bad controllability situation is illustrated in FIGURE 
16. Uncontrollable Net, where the net driven by “A” is uncontrollable. As a 
result, the downstream logic is untestable.

  

FIGURE 16. Uncontrollable Net

A fix for this case is shown in FIGURE 17. Flip-flop added for Controllability. The 
added flip-flop is scannable so it is fully controllable. The signal “testmode” 
will be held to “1” during capture so the point “B” is also fully controllable.

 

FIGURE 17. Flip-flop added for Controllability

Difficult to
Control net

BA

Difficult to
Control net

Shift clock

testmode

Q
d
si

se

scanin

scanout

A
B

33
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
Verifying Scan Chains

Scan chains are usually inserted into the design either during or after 
synthesis. Using constraints to specify the scan pins and the scan enable 
conditions, SpyGlass DFT can check the integrity of these chains post-
synthesis. Since SpyGlass DFT is designed for both RTL input as well as 
netlist input, the integrity of these chains can be checked. This requires 
using constraints to specify the scan pins and the scan enable condition. 

Assume that FIGURE 18. Scan chain is a portion of a scan chain with scan-in 
pin sin1, scan-out sout1 and scan enable se1. The constraints for this chain 
are:

scan_chain –scanin sin1 –scanout sout1-scanenable chain1
define_tag –tag chain1 –name se1 –value 1

A define_tag constraint (see SpyGlass DFT User Guide section “SpyGlass 
Constraints Currently Defined” for details) is used to define the conditions 
to enable a chain. There can be as many such constraints as there are 
distinct scan enable conditions.

A scan_chain constraint is used to define the scan-in port, the scan-out 
port and the define_tag for this chain.

If different chains in a design have different scan enable conditions, then 
multiple define_tag constraints are necessary. Scan_chain constraints for a 
design with 4 chains are illustrated below.

scan_chain –scanin sin1 –scanout sout1-scanenable chain1
define_tag –tag chain1 –name se1 –value 1
scan_chain –scanin sin2 –scanout sout2-scanenable chain2
define_tag –tag chain2 –name se1 –value 1
scan_chain –scanin sin3 –scanout sout3-scanenable chain3
define_tag –tag chain3 –name se1 –value 1
scan_chain –scanin sin4 –scanout sout4-scanenable chain4
define_tag –tag chain4 –name se1 –value 1
34
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
FIGURE 18. Scan chain

Verifying Test Signal Connections in Full-chip Designs

The objective is to ensure that the constraints written for the full chip 
satisfy the constraints already developed for the various blocks. The flow to 
accomplish this verification is illustrated in FIGURE 19. Connection Verification 
Flow.
35
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
FIGURE 19. Connection Verification Flow

Create test Constraints for Full Chip

From a test point of view, sub-blocks are lower-level blocks that will be 
processed as a single object by ATPG tools. Often the root-level setup 
requirements will be unique for each sub-block. FIGURE 20. Test Connections 
Checking shows an example of a chip with three sub-blocks and a common 
test controller. In such cases, check test signal connections with the 
following strategy:
 Verify that the test controller outputs can be driven to a state necessary 

for a selected sub-block
 Verify that logical connections exist between the test controller and the 

sub-block
 Verify that the sub-block gets the correct signals from the test controller

Repeat this process for each sub-block. 

Connection Verification

Create constraints to drive any 
embedded test controllers and to 

propagate signals from the controllers 
to the embedded blocks

Verify that all block.sgdc requirements 
are satisifed

Create test 
Constraints for 
Full Chip

Connection 
Verification 
Procedure
36
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
FIGURE 20. Test Connections Checking

Step 1: Drive Controller for a Block

Use define_tag constraints to specify a set of sequences on the test 
controller inputs that drive the test controller to a state necessary to test a 
sub-block. For information on using the define_tag constraint, refer to the 
"SpyGlass DFT Design Constraints” section in the DFT User Guide.

Example:

define_tag –tag block1 -name top.A -value <sequence of values 
for this port>

Step 2: Specify Controller Output

Use require_value constraints to specify values that the test controller 
output should have for the input sequence created in Step 1. For 
information on using the require_value constraint, refer to the “SpyGlass 

Block 1Block 3 Block 2

Test 
controller

Step 2: Verify correct controller 
output state

Step 3: Verify connection from 
controller to sub -block.

Step 4: Verify correct sub -
block input

A

B

C

Step 1: Create controller input 
sequence
37
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
DFT Design Constraints” section in the DFT User Guide.

Example:

require_value -tag block1 –name top.controller.B -value 
<final value expected on these pins for the input conditions 
specified in a define_tag statement.

Step 3: Define Controller/Block Connection Paths

Use require_path constraints to specify the controller output port and the 
sub-block input port that should be connected. For information on using 
the require_path constraint, refer to the “SpyGlass DFT Design 
Constraints” section in the DFT User Guide.

Example:

require_path -tag block1 -from top.controller.B –to 
top.Block_1.C

Step 4: Specify Block Test Ports and Values

Use require_value constraints to specify the values that should be achieved 
on the sub-block input port when the controller has the state created in 
Step 1. For information on using the require_value constraint, refer to the 
“SpyGlass DFT Design Constraints” section in the DFT User Guide.

Example:

require_value -tag block1 –name top.Block_1.C -value <final 
value expected on these pins for the input conditions 
specified in the define_tag statement in Step 1>

Connection Verification Procedure

The constraint file described in the Create test Constraints for Full Chip section 
can be used to verify that the block-level requirements are satisfied. Note 
that if the test controller logic allows only one sub-block at a time to be 
tested, then a separate constraint file for each sub-block is required and 
multiple runs must be used.

The flow shown in FIGURE 21. Test Connection Verification Procedure is a step-
by-step process:
38
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
 Verify that the proper controller outputs for a given sub-block are 
achieved.

 Verify that paths exist from the controller to the given sub-block.

 Verify that the values required at the sub-block inputs are satisfied.

FIGURE 21. Test Connection Verification Procedure

requirePath to
each sub-block

satisfied?

Test controller
requireValue

satisfied?

Each sub-block
requireValue

satisfied?

Yes

Yes

Debug path from
controller to sub-

block or define_tag
definition

Debug controller
design or

define_tag
definition

Debug path from
controller to sub-

block or define_tag
definition

No

No

No

Yes
39
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
GuideWare Methodology for DFT
The SpyGlass GuideWare methodology describes two fields of use: Block 
and SoC design. 

Block Field of use: In this field of use, checks and goals are organized to 
align with the evolution and the maturity of new or re-used RTL blocks.

SoC Field of Use: The SoC integration phase includes stitching of the new 
RTL blocks or IPs. This field of use is divided into the following stages: 
Initial RTL, RTL handoff, Netlist handoff, and Layout handoff.

For a typical RTL to layout design flow, SpyGlass DFT offers the following 
goals: 

Pre-DFT Design Stage (RTL, IP, Netlist)

 Check for DFT-Readiness of the design. This is achieved by the following 
goals:

 dft_scan_ready: to ensure that all registers in the design can be 
scanned

 dft_best_practice: to ensure high testability, check for 
estimated stuck_at fault-coverage, and means to improve it to reach 
the desired target

 dft_test_points: to insert test points to improve testability

 dft_abstract: to create a simplified abstract model of the block 
that can be used in lieu of the original RTL for efficient rule checking 
at the top/SoC level

Post-DFT Design Stage (IP, Netlist, SOC) 

 For post DFT stage of the design, SpyGlass DFT offers checking using 
the following goals:

 dft_block_check: to validate the test constraints of embedded 
blocks

 dft_scan_chain: to validate the scan chain connectivity through 
the design

 dft_abstract_validate: when using abstract models for one 
or more lower level blocks, verifies that the constraints under which 
the abstraction was done are met in the current design

The following tables show how the GuideWare fields of use correspond to 
40
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
the DFT goals. The tables below use the following convention:
 M: Mandatory

 O: Optional (Optional goals can be accessed from Tools/
Methodology_Configuration menu in Console GUI)

TABLE 1  DFT: New RTL

GuideWare 
Stage

Goals d
ft_

setu
p

 

d
ft_

scan
_

read
y

d
ft_

b
est_

p
ractice

d
ft_

test_
p

oin
ts

d
ft_

ab
stract

d
ft_

scan
_

ch
ain

initial_rtl O M M

rtl_handoff O M M O M

netlist_handoff O M M O M M
41
Synopsys, Inc.



Performing DFT Analysis using SpyGlass DFT

The Need for DFT-Optimized Design
TABLE 2  DFT: SoC

GuideWare Stage Goals d
ft_

setu
p

 

d
ft_

scab
_

read
y

d
ft_

b
est_

p
ractice

d
ft_

test_
p

oin
ts

d
ft_

ab
stract

d
ft_

scan
_

ch
ain

d
ft_

b
lock_

ch
eck

d
ft_

ab
stract_

valid
ate

initial_rtl O M M O
rtl_handoff O M M O M O O
netlist_handoff O M M O M O O O
layout_handoff O M M O O O O
42
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Step-by-step Solution
This section will describe the steps for using SpyGlass DFT in some detail.

Setup for DFT (goal name = dft_setup)

Run the setup for the dft_setup goal. This will help you to create the DFT 
constraints for your design, including:
 black box resolution

 test clocks

 asynchronous set/reset signals

 test modes

 PLL and clock shapers

 clock gating cells

 setting of no_scan, scan_wrap, and so on

FIGURE 22. Setup for DFT
43
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
To identify all the clocks in the design, select “Identify potential clocks in 
the design” tab during “Design Clocks” step, as shown below.

FIGURE 23. Design Clocks

This will bring up a window with different design clocks. Make sure to mark 
a design clock as a test clock under “DFT Mode” column, as shown below.

FIGURE 24. Selecting DFT Mode

The step marked as “Design Resets” can be used to automatically identify 
async set/reset signals in the design.

Select this for automatic
clock identification

Mark test clocks
44
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 25. Design Resets

Any async set/reset automatically gets defined as a test mode signal of the 
opposite active value (to keep them disabled during scan-shift). Any 
additional test signals can be directly added in the test-mode file (the left-
most window shown below).
45
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 26. Adding additional test signals

The next step in the DFT Setup Manager will let user define various other 
constraints – usually applicable to black boxes in the design, such as PLL, 
clock_shaper, scan_wrap, gating_cell, and so on.

Finally, you can identify modules with no_scan constraint, and close the 
setup manager by saving the created SGDC constraint files. Make sure that 
the generated SGDC constraint files are enabled for any DFT goal that you 
run on the design. If necessary, you can regenerate these files, or edit 
them prior to running any goal through the Setup Manager.

If you are not using Console GUI and DFT Setup Manager, you can use the 
following steps to manually create the necessary setup for DFT analysis.

Create necessary clock Constraints

Identify all test clocks in the design using testclock constraint. For 
example:

clock –name tClk1 –testclock

Add any additional test
mode signals here
46
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Create necessary test_mode Constraints

Identify the test mode signals using test_mode constraint. Note that in 
addition to the normal test signals, you also need to declare set/reset 
signals as testmode signals. Set/reset signals are normally held off during 
scan shift operation.

For example, if the design has the following set/reset signal constraints -

reset -name "RefDesCore.rst100"   -value 0
reset -name "RefDesCore.dftreset" -value 0

Here the values indicate the ‘active’ value for reset. We will need to ensure 
that the signals that are acting as ‘reset’ are ‘inactive’ during scanshift 
mode. So we need to generate the following constraints (note the ‘inactive’ 
values):

test_mode -name "RefDesCore.rst100"   -value 1 -scanshift
test_mode -name "RefDesCore.dftreset" -value 1 -scanshift

Skip this step of creation of ‘test_mode’ constraints if they are already 
known.

Achieve Scannability (goal name = dft_scan_ready)

 Run the dft_scan_ready goal. 

 A flip-flop is considered as scannable if during scanshift:

 its clock can be controlled by a test clock (checked by DFT rule 
Clock_11) and

 its set and reset pins (if any) are forced inactive (checked by DFT rule 
Async_07)

 These two rules may be violated either because test logic has not yet 
been designed in or because the constraint file has missing or incorrect 
entries. If there are violations of either rule, then diagnostic rules 
Diagnose_testclock and Diagnose_testmode can be used to diagnose 
the cause.

 Any non-scannable flip-flop will reduce the coverage for logic that only 
feeds that flip-flop as well as logic that is only driven by that flip-flop.
47
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 The dft_scan_ready goal also checks that testmode signals that 
only control asynchronous set or reset pins should be unrestricted 
during capture. (checked by DFT rule Async_08)
 Restricting such a dedicated signal would result in the set/reset nets 

not being tested thoroughly.

 Such a violation can be fixed by adding the -scanshift argument 
to the test_mode constraint to indicate that the constraint only 
applies during shifting and is a don’t care otherwise.

Clock_11 Debug

Clock_11 violations detect clock sources (see the description of Clock_11 in 
the SpyGlass DFT User Guide section on Clock Rules) that are not 
controlled by testclocks. Each violation indicates the number of flip-flops 
clocked by this source. Selecting any violation will highlight the source on 
the schematic. The following is an example shown in the Incremental 
Schematic.

FIGURE 27. Clock_11 violations

The testclock propagation through the ‘Show Case Analysis’ mechanism 
48
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
appears automatically in the schematic.

Points that block testclock propagation will have a pulse symbol, that is, 
either a ^ or a v, on a device input but no clock pulse symbol on the device 
output:

FIGURE 28. Show Case Analysis

In this example, the bottom input to the AND gate should be held at ‘1’ to 
enable the clock to pass through. Hover the cursor on such a pin. Then, 
right-click and select Show Input Cone option to either primary inputs or 
flip-flops. Apply one or more constraints so that the device input pin has a 
value that will enable the clock path.

Diagnose_testclock

 Select a violation and display in the IS

 The testclock source and a node that blocks testclock propagation are 
displayed

 The input pin on the blocking and the value on that pin are also 
displayed
49
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 Right clicking on that pin and selecting “Show input cone” can be used 
to display the logic driving the blocking pin

 Right clicking and selecting “Show debug data” and then selecting “DFT” 
will display values on a pin

 Use this data to determine how the clock was blocked and where 
constraints or the blocking logic could be modified

Info_testclock

This rule displays testclock propagation for both scanshift and capture 
testmode.
 Select the violation message for scanshift if there are Clock_11 

violations and display in the IS
 Select the violation message for capture if there are Clock_11_capture 

violations and display in the IS
 The display will show either “^” for positive going clock pulse or a “V” 

for a negative going pulse
 The displayed propagation may be useful to determine how a testclock 

is reaching a particular or why a particular phase of a testclock is 
created

Async_07 Debug

Async_07 violations detect async sources (see the description of Async_07 
in the SpyGlass DFT User Guide section on Asynchronous Rules) that are 
not rendered inactive during scanshift. 
 Select a violation and display in the MS.

 The testmode value propagation appears automatically on the 
schematic.

 Visually find out the root cause why the async source of the flip-flops is 
held at ‘X’ or at the active value. This will lead to the conclusion about 
how possibly a test_mode constraint can be applied to rectify the 
Async_07 violation.

In the example below, the schematic shows no constraint was applied on 
the rst input pin of the design:
50
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 29. Async_07 violations

Async_08 debug

Async_08 detects connections to scannable flip-flop set or reset pins that 
are not fully controllable.
 Select a violation and display in the IS.

 The schematic will be back annotated with testmode capture conditions 
and include the effects of power and ground 

 Use the displayed controllability values to determine the root cause for 
the incomplete controllability (nn-, ny- or yn-) at the flip-flop set or rest 
pin

 Consider changing a constraint or possibly modifying the design

Diagnose_testmode

 Select a violation and display in the IS

 Right click on a highlighted pin to see the values forced on that pin by 
either a testmode constraint or the result of a power or ground 
simulation

NOTE: Since Diagnose_testmode identifies blocking gates, debug data will not be displayed 
on module boundaries. The display only operates on primitive gate input pins.
51
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 Use “Show input cone” to trace to the source of the fixed value

 Consider either changing a constraint or possibly modifying the logic

Info_testmode

 Select a violation and display in the IS

 The IS schematic will show all signals with non-x testmode values and 
therefore this may be difficult to use in large designs; in that case 
Diagnose_testmode may be more practical

 The values forced by either a testmode constraint or the result of a 
power or ground simulation

 This information may be useful to ensure that testmode is operating as 
required

Info_scanwrap debug

This informational rule lists design units that are declared in a scanwrap 
constraint but the enable pin, declared in the scanwrap constraint, is not 
active. Display the design unit and use Info_testmode. Trace the fanin cone 
of the enable pin to determine what change is required to force an enable 
value on this pin.

Info_noscan debug

This rule displays flip-flops that have been declared as noscan by a noscan 
constraint.

This rule may be useful when trying to determine why faults are 
uncontrollable or unobservable. Both conditions are necessary for fault 
detection.

Info_inferredNoscan debug

This rule displays flip-flops that have been inferred as noscan. This rule 
may be useful when trying to determine why faults are uncontrollable or 
unobservable. Both conditions are necessary for fault detection.
52
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
A flip-flop is inferred as noscan if it feed an asynchronous pin of another 
flip-flop or has a specified value from a testmode constraint on it’s output.

The reasons are:
 The clock -testclock constraint is specified on its output.

 The test_mode constraint is specified on its output.

 It's output gets a non-X ('0') test_mode value through sequential 
propagation

 It is driving an asynchronous pin of a scan flip-flop.

This rule may be useful when trying to determine why faults are 
uncontrollable or unobservable. Both conditions are necessary for fault 
detection.

Viewing the estimate of fault coverage of the design

The rule Info_coverage estimates the fault/test coverage of the design. 
The generated reports help in understanding the test health of the design. 
The following fault browser helps understand the relative testability scores 
achieved in the design.
53
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 30. Fault coverage of the design

The following summary reported generated at this stage helps understand 
the fault status.
54
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 31. Fault status

You can generate a detailed fault report by setting the 
dftGenerateStuckAtFaultReport parameter using the following command:

set_parameter dftGenerateStuckAtFaultReport all
55
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 32. Detailed fault report
56
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Ensure Compliance to DFT Best Practices (goal name = 
dft_best_practice)

To ensure compliance to the DFT best practices, perform the following 
steps:
1. Run the dft_best_practice goal. 
2. Review the stuck_at_coverage_audit report.

Review the stuck_at_coverage_audit report

Use the stuck_at_coverage_audit report to increase coverage.

The objective of the first section of this report is to increase coverage. The 
objective of the second section of this report is to ensure that ATPG 
generated tests operate as expected.

The following figure illustrates an example of the first section of this report:
57
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
FIGURE 33. Example of the stuck_at_coverage_audit report

The report indicates the current coverage for the design and the steps that 
you need to follow to improve the coverage. The following sections, listed 
in report order, describe the diagnostic procedure for each fault category in 
the report.
58
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Make flip-flops scannable

 Flip-flop scannability depends on the flip-flop clocked by a testclock and 
having it’s set and reset pins disabled in scan shift mode. 

  See section Clock_11 Debug for a flip-flop that is not clocked by a 
testclock during scan shift. 

 See section Async_07 Debug for a flip-flop with set or rest pins not forced 
inactive during scan shift.

Make Latches Transparent

 The Latch_08 rule detects latches that are not transparent in the 
capture mode. You can use the Info_testmode rule for capture to detect 
the non-transparent latches.

 Select and double-click a Latch_08 violation to view the corresponding 
Incremental Schematic.

 If the latch enable has a non-X but an inactive value then either a 
test_mode constraint should have the complementary value, or some 
device in the fan-in to this latch enable should produce the 
complementary value.

 If the latch enable has no value, then either the logic feeding this enable 
should be modified (see FIGURE 12. Reset bypass example for an example) 
so that the enable is forced active during capture or new test_mode 
constraints must be defined.

Scan-wrap black boxes

 Select and double-click a Info_scanwrap violation to view the 
corresponding Incremental Schematic.

 Right click and select ”Set SGDC constraints on module” which will 
invoke the SGDC Constraint Editor

 Set the Select Constraint box to scan_wrap

 Enter the black box module name

 Enter the pin(s) that control the scan wrapper

 Enter the value(s) that causes the wrapper to enter scan mode
59
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 When finished, click “Append” to add the newly created constraint to the 
SGDC

 Rerun SpyGlass

Combinational Loops Made Transparent

 Select and double-click a Topology_01 violation to view the 
corresponding Incremental Schematic

 The circuit or constraints must be modified so the loop is broken during 
capture

 The logic driving loop inputs can be traced by right clicking a loop input

 Constraints may be added by right clicking on a net driving a loop input 
and selecting Set SGDC constraints

Testmode/Tied pins made controllable

 Select Info_untestable and then click on Incremental Schematic to view 
faults blocked by testmode constraints

 Consider modifying a constraint on the pin listed in the violation 
message

 Select Info_Info_synthRedundant and then click on Incremental 
Schematic to view faults blocked by connections to power or ground

 Consider modifying the logic

Info_Untestable debug

 This rule displays faults rendered untestable due to blocking by a 
testmode signal or forced to a constant value by a testmode signal. 
Blocked faults are marked as BL and tied faults are marked as TI. 
Marking will be displayed as xx/yy where xx and yy are BL, TI or blank. 
For example, a node is TI/BL if the stuck at 0 fault on this node is TI and 
the stuck at 1 fault on this node is BL. A node is /TI if the stuck @ 0 fault 
is testable and the stuck at 1 fault is tied.

 This rule does not necessarily imply a problem. It is available so that all 
faults may be accounted for.
60
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 TI (Tied) and BL (Blocked) faults are caused by only power-ground 
simulation. Faults which are blocked by test_mode are marked as “ND 
or !DT” (Not Detected). Fault on the node itself (on which test_mode is 
specified) is marked as “UT (untestable)”

Info_SynthRedundant debug

 If the source files are RTL, then this rule detects logic that is likely to be 
removed by synthesis and therefore faults in this logic can be ignored 
since they are excluded from both the fault coverage calculation and the 
test coverage calculation

 If the source files are at the netlist level and therefore obtained after 
synthesis then synthesis redundancies have already been removed. In 
this case, Info_Synthredundant detects faults that are untestable due to 
blocked paths caused by connections tied to ground

 In either case, there is usually nothing wrong with the design. This rule 
is available so that all faults may be accounted for

Hanging nets made controllable

 Select and double-click a TA_09 violation to view the corresponding 
Incremental Schematic

 The violation message identifies the module and the unconnected pin

 Consider adding a test point to the pin or modifying the module design

Tristate nets made observable

 Select and double-click a TA_09 violation to view the corresponding 
Incremental Schematic

 Consider adding an observation test point to the enable net or adding a 
pullup to the tristate output

The force_ta nets and test_point constraint pins made testable

 Check sgdc file

 Use Info_uncontrollable to identify uncontrollable nets. Consider 
changing the force_ta constraint or modifying the fanout of force_ta pin
61
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 Use Info_unobservable

Info_uncontrollable debug

 This rule displays the controllability status for nodes that are not 
completely controllable during capture. Uncontrollability is displayed as 
three y or n characters. For example, a node is ynn if it can be 
controlled to 0 but cannot be controlled to a 1 or to z

 This rule does not necessarily imply a problem. It is available to help 
understand the reason that faults are not testable

Info_unobservable debug

 This rule displays nodes that are not observable during capture. 
Unobservability is displayed as N

 This rule does not necessarily imply a problem. It is to help understand 
the reason that faults are not testable

The no-scan flip-flops made scannable

 Select and double-click a Info_noscan violation to view the 
corresponding Incremental Schematic

 Consider removing the noscan constraint

Using the Coverage_Audit report to ensure test operation

The second section of the Audit-Coverage report covers rules that detect 
conditions which, if not fixed, can prevent ATPG tests from operating as 
expected. As a result, actual coverage may be less than the result 
predicted by ATPG tools or tests may fail even when a chip is operating 
correctly.

The rules in this section of the report are sorted by the number of flip-flops 
affected by each rule. Flip-flop count is used instead of computing possible 
change in coverage because of runtime consideration.

Async_02 violations

 Select an Async_02 violation and view results in Incremental Schematic.
62
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 A path from a flip-flop output to a flip-flop set or reset pin is displayed. 

 The displayed path should be blocked in the capture mode.

 Hovering the cursor over any non-path input and schematic log window 
displays information about this input. 

 Double click on this input to display it's fanin cone

 Eliminate this violation by either using testmode to block this path or by 
changing the logic

Async_11 violations

 Select an Async_11 violation opens a spreadsheet viewer window

 The spreadsheet lists all the data pins and all the flip-flop set or reset 
pins reached by this violation

NOTE: An Async_11 violation occurs when a pin fans out to at least one flip-flop data 
pin and at least one flip-flop set or reset pin as a violation. To fix a violation, all 
paths to data pins must be blocked or all paths to set/reset pins must be 
blocked.

NOTE: Usually, the easiest way to fix an Async_11 violation is to select the pin type 
(either data or set/reset) with the fewest number of destinations. In this way, 
we would expect to have to make the fewest number of changes.

 Select a pin and click on Incremental Schematic

 A path from the violation source pin to either a data pin or a set/reset 
pin will be displayed

 The displayed path should be blocked in the capture mode.

 Hover the cursor over any non- path input and schematic log window 
will provide information about this input

 Double click on this input to display it's fanin cone

 Eliminate this violation by either using testmode to block this path or by 
changing the logic

 Clock_04 violations

 Select a Clock_04 violation that opens a spreadsheet viewer window

 The spreadsheet will list all clock pins that are used as data pins
63
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 Select a pin in the spreadsheet and click on the Incremental Schematic

 A path from the clock and the path to a flip-flop d-pin is displayed
NOTE: A clock_04 violation occurs for any pin declared in a clock constraint with an 

unblocked path to a flip-flop d-pin regardless of whether or not this pin is 
actually used as a clock.

 Hover the cursor over any non- path input and schematic log window 
will provide information about this input

 Double-click on this input to display it's fanin cone

 Eliminate this violation by either using testmode to block this path, 
changing the logic or removing the clock constraint

Clock_08 violations

 Select a Clock_08 violation

 A path from a clock to a flip-flop d-pin is displayed
NOTE: A clock_08 violation occurs for any pin declared in a clock constraint with an 

unblocked path to a flip-flop d-pin regardless of whether or not this pin is 
actually used as a clock.

 Hover the cursor over any non-path input and schematic log window 
provides information about this input

 Double click on an input to display it's fan-in cone

 Eliminate Clock_08 violations by using testmode to block this path, 
changing the logic or removing the clock constraint

Clock_16 violations

 Select a Clock_16 violation

 Paths with opposite inversion parity from a clock to flip-flop d-pins is 
displayed

 Hover the cursor over any non-path input and schematic log displays 
information about this input

 Double-click on an input to display it's fan-in cone

 Eliminate Clock_16 violations by changing the clock logic so that 
inversion is removed during capture or use testmode to block this path
64
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Clock_17 violations 

 Select a Clock_17 violation

 Paths from a clock to flip-flop whose output gates the same clock to a 
second flip-flop is displayed

 Hover the cursor over any non- path input and schematic log window 
will provide information about this input

 Double-click on an input to display it's fan-in cone

 Eliminate Clock_17 violations by changing the clock logic so that the 
clock gating path is blocked during capture

Clock_21 violations

 Select a Clock_21 violation which will open a spreadsheet viewer 
window

 The spreadsheet will list all clock pins that are used as set or reset pins

 Select a pin in the spreadsheet and click on the Incremental Schematic

  A path from the clock to a flip-flop set or reset pin is displayed
NOTE: A Clock_21 violation occurs for any pin declared in a clock constraint with an 

unblocked path to a flip-flop d-pin regardless of whether or not this pin is 
actually used as a clock.

 Hover the cursor over any non-path input and schematic log window 
provides information about this input

 Double-click on this input to display it's fan-in cone

 Eliminate this violation by either using testmode to block this path, 
changing the logic or removing the clock constraint

Clock_27 violations

 Select a Clock_27 violation and click on the Incremental Schematic

 A path from a clock through a CGC to a flip-flop clock pin is displayed
NOTE: A Clock_27 violation occurs when clock edge, expected at the flip-flop clock pin, 

cannot be produced by the CGC
65
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 Eliminate this violation by either changing the CGC edge type or 
changing the inversion parity of the clock path between the CGC and the 
flip-flop

Clock_28 violations

 Select a Clock_28 violation and select the Incremental Schematic

 Clocks that drive a flip-flop clock pin through re-convergent paths or 
clock paths that have re-convergent enables is displayed

 Hover the cursor over any non-path input and schematic log window 
provides information about this input

 Double-click on an input to display it's fan-in cone

 Eliminate Clock_28 violations by changing the clock logic to block all but 
one of the re-convergent paths during capture

Scan_07 violations

 Select a Scan_07 violation and select the Incremental Schematic

 Sequentially derived internal signals declared as a testmode is displayed

 Hover the cursor over any non-path input and schematic log window 
provides information about this input

 Double-click on an input to display it's fan-in cone

 Eliminate Scan_07 violations by changing the clock logic to block all but 
one of the re-convergent paths during capture

Scan_22 violations

 Select a Scan_22 violation and display the Incremental Schematic

 The portion of the scan chain that spans the domain crossing as well as 
the clocks feeding these scan cells is displayed

 Eliminate Scan_22 violations by inserting a lockup latch at the domain 
crossing
66
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Topology_03 violations

 Select a Topology_03 violation and display the Incremental Schematic

 A flip-flop and an unblocked path to a second flip-flop set or reset pin is 
displayed

 Eliminate the Topology_03 violations by blocking the path in scan mode

Topology_05 violations

 Select a Topology_05 and display the Incremental Schematic

 The devices wire-ANDed or wire-ORed is displayed

 Eliminate the Topology_05 violations by changing the logic to eliminate 
the wired connection

Topology_13 violations

 Select a Topology_13 violation and display the Incremental Schematic

 The re-convergence logic and the path from the re-converge node to a 
flip-flop set or reset pin is displayed

 Eliminate the Topology_13 violation by changing the logic to block all 
but one of the re-converging paths in capture mode. Blocked paths may 
cause a reduction in coverage in which case consider use of test points

Tristate_06 violations

 Select a Tristate_06 violation and display the Incremental Schematic

 The wired net, it's tristate drivers and the enable control nodes are 
displayed

 The violation message identifies the problem such as no drivers on or 
more than one driver on

 Eliminate Tristate_06 violations by changing the enable decode logic so 
that it is fully decoded
67
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Achieve BIST Readiness (goal name = dft_bist_ready)

 Run the dft_bist_ready goal. The dft_bist_ready goal can be run 
from the DFT sub-methodology. You can select it in the “Goal Setup and 
Run” tab of the GUI, by clicking on the “Select Methodology” link. In the 
pop-up window, select “SpyGlass Sub-Methodology” and click OK. The 
DFT goals will appear in the left window, as shown below.

FIGURE 34. DFT goals

 In BIST (Built-In-Self-Test) designs, the scan output is compressed into 
a signature register, and capturing unknown values will corrupt the 
signature.

 A design is BIST ready when no unknown values (“X”) are captured in 
the scannable flip-flops of the design. This is because in BIST (Built-In-
Self-Test) designs, the scan output is compressed into a signature 
register, and capturing unknown values will corrupt the signature. This 
can also be the case when ATPG Compression is used, so you should 
68
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
consider running this goal also for designs using such Compression 
techniques.

 The dft_bist_ready goal checks the following rules:

 BIST_01: Flip-flops that have more than the specified number of 
flip-flops and black boxes in their fan-in cones

 BIST_02: Flip-flops that are driven by a gate instance with large 
fan-in

 BIST_03: Flip-flops that remain in unknown state after initialization

 BIST_04: Primary outputs or inout ports and data pins of scannable 
flip-flops that have unknown values in their fan-in cones

 BIST_05: In scan node, have TIE-X cells outputs bypassed

 It also runs the Info_testmode and Info_testclock rules to document the 
propagation of the testclock and testmode signal to help debug rule 
violations.

Adding Testpoints (goal name = dft_test_points)

TA_09 debug

 Run the dft_test_points goal.

 The TA_09 generates a report test_points_selected_2.rpt that lists all 
suggested test points. The report is sorted in descending order for the 
number of nets affected by the test point and also lists the coverage 
that would be obtained if all test points up to that place in the list are 
used.

 It is often the case that not all of the test points are required. TA_09 
also produces a constraint file called test_points_selected_2.rpt that 
contains a test point constraint (see DFT User Guide section SpyGlass 
DFT Constraints Currently Defined) for each test point in the report. This 
file can be edited to remove undesired test points--for example, test 
points in IP blocks or in critical timing areas of the design.

 Save the edited report in the working directory and rerun SpyGlass DFT. 
The Info_coverage rule indicates the coverage as if the design was 
modified for the selected set of test points.
69
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
 Once a selection of test points has been made, then the RTL files can be 
edited as illustrated in FIGURE 17. Flip-flop added for Controllability and 
FIGURE 18. Scan chain. 

Validating Scan Chains (goal name = dft_scan_chain)

Scan chains must be specified using scan_chain constraint as described in 
the Verifying Scan Chains section. 

Scan_22

Scan_22 will flag incomplete chains and highlight potential places where 
the chains are not properly connected. 
 Click Soc_04. Select a violation of Scan_22.

 Soc_04 will highlight the scannable values defined for this chain. If the 
scan mux at the point of the Scan_22 violation is not correct, then 
either change the Define_tag definition or change the connections to 
this scan mux.

Scan_24

Scan_24 identifies flip-flops that are not part of any chain. 

If any of these flip-flops should on a chain, verify that the scan enable 
conditions for this chain are defined in a define_tag constraint.

Scan_25

Scan_25 identifies chains that contain data in version. Violations may be 
caused by incorrectly wired scan chains scan flip-flop models.

Scan_26

Scan_26 identifies scan chains that do not have lockup latches driving the 
scan-out pin. The cause may be a design error in which the latch was never 
inserted into the design or a wiring error such that the latch is not wired in 
70
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
a lockup configuration. 
 Display the scan-out pin, as described in this scan_chain constraint, in 

the IS. 
 Probing on this pin will determine whether or not a latch is in the design. 

If not present, then the design must be changed. 
 If incorrect values or if no values are reaching the latch, then there is a 

connection problem associated with this latch. Probing the latch enable 
pin in the IS should reveal the cause.

Info_scanchain

This informational rule generates the scan chain information as available in 
the design for debug purpose. It generates appropriate schematic 
information for scan chain viewing. It also generates text report to list all 
the flip-flops in the scan chains as shown in the following figure.

FIGURE 35. Flip-flops in the scan chains

Verifying Test Signal Connections in Full-chip Designs (goal 
name = dft_block_check)
71
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
Create test SGDC for Full-chip

 Create define_tag constraints that drive the test controller to the state 
necessary for each sub-block:

define_tag –tag <condition name | sub-block name> -name 
<test controller port name> -value <value for this port>

 Create require_value constraints on the test controller ports with the 
values that should be produced for each sub-block setup:

require_value -tag <condition name | sub-block name> –name 
<test controller port name> -value <value expected on this 
pin for this condition>

 Create require_value constraint for each of the sub-blocks using the 
syntax:

require_value -tag <condition name | sub-block name> –name 
<sub-block pin name> -value <value expected on this pin for 
this condition>

 Create require_path constraints for each of the sub-blocks using the 
syntax:

require_path -tag <condition name | sub-block name> -from 
<controller port name> –to <sub-block pin name>

 Declare all sub-blocks with require_value or require_path constraints as 
black boxes.

 Add all available block.sgdc files and black box these modules.

Subblock Check (goal name = dft_block_check)

 Follow the diagnostic procedure shown in Start with the Soc_01 
violations for FIGURE 21. Test Connection Verification Procedure 
require_value constraints on test controller outputs. (Remember that 
Soc_01 simulates the values specified in define_tag –name XX and 
checks if the require_value constraints with same XX name are 
achieved.)

 Soc_01 will have a violation for nodes that do not have the value 
specified by a require_value constraint. If any violations are issued, 
72
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
check the define_tag sequence and the corresponding require_value 
constraints. Complex define_tag sequences can be debugged by cutting 
the define_tag sequence into smaller pieces and putting require_value 
constraints on the state variables inside the test controller. If there are 
still Soc_01 violations, then repeat this process with an even smaller 
sequence.

 Soc_01_info will highlight nodes that do achieve the required values. 
The use of this rule may be an aid in debugging Soc_01 violations since 
it can be used to confirm that required values for a given define_tag 
name are achieved. 

 When there are no Soc_01 violations for the test controller outputs, 
select Soc_02 violations for require_path constraints that define test 
controller and sub-block paths. Selecting an Soc_02 will highlight the 
violating connection in the MS. If a topological path does not exist, then 
either the design is not clearly understood or the enabling conditions are 
incorrect. 

 If the require_path constraint does not specify a setup condition, then 
an Soc_02 violation means that no topological path exists. 
nIf the require_path constraint does specify a setup condition, then an 
Soc_02 violation means that either no topological path exists or the 
values required to sensitize this path are incorrect. 

 An Soc_02_info violation for a require_path may provide useful 
additional information. (Refer to the Soc_02_info rule in the 
Connectivity Verify Rules Reference Guide.) 

 Soc_05 violations highlight pins that have not achieved the values 
specified in their block.sgdc files. Such violations are caused by either a 
design error in the connection to a sub-block or in the test_mode and 
testclock constraints for the top-level design. Info_testmode and 
Info_testclock may be an aid in diagnosing these violations. 

Creating and Validating an Abstract Model for a Block (goal 
names = dft_abstract, dft_abstract_validate)

SpyGlass DFT supports a hierarchical SoC methodology in which a 
simplified abstract model of the block is created when verifying the block. 
You can use this model instead of the original RTL for efficient verification 
at the top/SoC level.
73
Synopsys, Inc.



Step-by-step Solution

The Need for DFT-Optimized Design
The creation of the abstract model is done by running the dft_abstract goal 
on the block. 

When using abstract models for one or more lower level blocks in a design, 
the dft_abstract_validate goal verifies that the constraints under which the 
abstraction was done are met in the current design

Refer to the SoC Methodology User Guide for more information on the use 
of the hierarchical SoC methodology for DFT.

Using Autofix/Selective Autofix

The AutoFix feature provides the capability to automatically fix the issues 
reported by the supported rules by modifying the RTL. The Selective 
Autofix feature provides the ability to fix the reported issues selectively.

You can enable the Autofix feature for a goal and for the supported rules 
using the dft_autofix and the rme_active parameters. 

The following snippet from the project file describes method to enable the 
autofix feature for the TA_09 rule:

current_goal  dft/dft_test_points 
set_parameter dftAutoFix {+RULES[TA_09]}
set_parameter rme_active 1

For more information on running the Selective Autofix feature, refer to the 
Running the Selective Autofix section in the DFT Rules Reference Guide.
74
Synopsys, Inc.



Appendix A
Sample SGDC File:

current_design RefDesCore
// --------------------------------------------------------
// The following clocks have been found by running 
'Dft_setup' goal.
// --------------------------------------------------------
clock -name "RefDesCore.mc_clk_i" -domain 
"RefDesCore.mc_clk_i" -period 10.000000 -testclock
clock -name "RefDesCore.eth_mtx_clk_pad_i" -domain 
"RefDesCore.eth_mtx_clk_pad_i" -period 10.000000 -testclock
clock -name "RefDesCore.clk100" -domain "RefDesCore.clk100" 
-period 10.000000 -testclock
// --------------------------------------------------------
// The following constraints have been found by running 
Dft_setup goal
// --------------------------------------------------------

test_mode -name "RefDesCore.rst100"   -value 1 -scanshift
test_mode -name "RefDesCore.dftreset" -value 1 -scanshift
test_mode -name "RefDesCore.usb_phy_clk_pad_i_en" -value "1" 
-scanshift
75
Synopsys, Inc.



Appendix A
76
Synopsys, Inc.


	SpyGlass® DFT Submethodology (for GuideWare 2017.12)
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	The Need for DFT- Optimized Design
	The Need for DFT-Optimized Design
	Introduction
	Objective
	Tool Versions
	References


	Document Overview
	GuideWare Reference Methodology
	Prerequisites

	Designing for Test
	Scan Flip-flops and Chains
	Latch Transparency
	Capture

	Performing DFT Analysis using SpyGlass DFT
	DFT Setup
	DFT Setup Manager
	Create Constraints for Bidirectional Ports

	Steps to maximize fault coverage
	Achieve Scannability
	Make Latches Transparent
	Compliance to DFT Best Practices
	Preparing design for BIST
	Adding Testpoints
	Verifying Scan Chains
	Verifying Test Signal Connections in Full-chip Designs
	Create test Constraints for Full Chip
	Connection Verification Procedure

	GuideWare Methodology for DFT

	Step-by-step Solution
	Setup for DFT (goal name = dft_setup)
	Create necessary clock Constraints
	Create necessary test_mode Constraints

	Achieve Scannability (goal name = dft_scan_ready)
	Clock_11 Debug
	Diagnose_testclock
	Info_testclock
	Async_07 Debug
	Async_08 debug
	Diagnose_testmode
	Info_testmode
	Info_scanwrap debug
	Info_noscan debug
	Info_inferredNoscan debug
	Viewing the estimate of fault coverage of the design

	Ensure Compliance to DFT Best Practices (goal name = dft_best_practice)
	Review the stuck_at_coverage_audit report
	Make flip-flops scannable
	Make Latches Transparent
	Scan-wrap black boxes
	Combinational Loops Made Transparent
	Testmode/Tied pins made controllable
	Hanging nets made controllable
	Tristate nets made observable
	The force_ta nets and test_point constraint pins made testable
	The no-scan flip-flops made scannable
	Using the Coverage_Audit report to ensure test operation
	Async_02 violations
	Async_11 violations
	Clock_04 violations
	Clock_08 violations
	Clock_16 violations
	Clock_17 violations
	Clock_21 violations
	Clock_27 violations
	Clock_28 violations
	Scan_07 violations
	Scan_22 violations
	Topology_03 violations
	Topology_05 violations
	Topology_13 violations
	Tristate_06 violations

	Achieve BIST Readiness (goal name = dft_bist_ready)
	Adding Testpoints (goal name = dft_test_points)
	TA_09 debug

	Validating Scan Chains (goal name = dft_scan_chain)
	Scan_22
	Scan_24
	Scan_25
	Scan_26
	Info_scanchain

	Verifying Test Signal Connections in Full-chip Designs (goal name = dft_block_check)
	Create test SGDC for Full-chip

	Subblock Check (goal name = dft_block_check)
	Creating and Validating an Abstract Model for a Block (goal names = dft_abstract, dft_abstract_validate)
	Using Autofix/Selective Autofix


	Appendix A


