SpyGlass® DFT
Submethodology (for GuideWare
2017.12)

N-2017.12-SP2, June 2018

SYNOPSYS



Copyright Notice and Proprietary Information

©2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated
documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All other use,
reproduction, modification, or distribution of the Synopsys software or the associated
documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader's responsibility to determine the applicable
regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth
at http://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience
only. Synopsys does not endorse and is not responsible for such websites and their
practices, including privacy practices, availability, and content.

Synopsys, Inc.

690 E. Middlefield Road
Mountain View, CA 94043
WWW.SYyNnopsys.com



Report an Error
The SpyGlass Technical Publications team welcomes your feedback and suggestions on

this publication. Please provide specific feedback and, if possible, attach a snapshot.
Send your feedback to spyglass_support@synopsys.com.


mailto:spyglass_support@synopsys.com




Contents

o = T = 9
ADOUL This BOOK ... e 9
Contents Of ThisS BOOK ... e 10
Typographical CONVENTIONS ....coiii ittt e eaeeaaaes 11

The Need for DFT-Optimized DesSign.......ooiiiiiiiii i 13
The Need for DFT-Optimized DeSign.....coceiiiiiiii i 13

o Yo 11 T3 o 14

L0 o] =T o1 1Y 14

e T ] Y=Y 5] o 1 14

LS =] =] o = 14
DOCUMENT OVEIVIEW .. ..ttt ettt et et et et 15
GuideWare Reference MethodolOogy ... ...c.cooiiiiiiiiiiii e 16
L =T =To B TS (= P 16

[ TSTSY o | o] Hia e B 0] gl 1= T 17
Scan Flip-flops and Chains ... e 17
LatCh TraNSPAIENCY .. ..ttt et ettt et ettt ettt e e et e e aneeaaneenn 18
L7 1 1 U 19
Performing DFT Analysis using SpyGlass DFT....coooiiiiiiiiiiiiiciiieecaeen e 21
DT ST 51 22
DT BT =Y W8T o 1Y/ =T g = T 1= 22
Create Constraints for Bidirectional POrts ............oooiiiiiiiiiiiiiiiiiiiiane. 26
Steps to maximize fault COVErage ......coviiiiiiiiii e e, 27
Achieve Scannability ......cooiiiii e 27

Make Latches TranSParent. ... ..o eiiiii ettt e e e e eaaaneeennn 29
Compliance to DFT BeSt PractiCes ......veviiiiiieiiiiii e eeaaas 30
Preparing design for BIST ...ttt e e e 31

72X o [ T T T =TS o o o 1 g 1 = 31
Verifying SCan Chains........cioiiii it e eae e eaeaas 34
Verifying Test Signal Connections in Full-chip Designs......c.ccceevvviiinnn.... 35
Create test Constraints for FUll Chip ....covioiiiii e 36
Connection Verification Procedure ....... ..o 38
GuideWare Methodology for DFT ... e eaieee e 40
Step-by-step SOIUTION ... e 43

v
Synopsys, Inc.



Setup for DFT (goal name = dft_Setup) ....covviiiiiiiiii e 43

Create necessary Clock CoNStraiNtS........cveeiiiiiiiiiiiiiiii e eeeeiaaas 46
Create necessary test._mode ConstraintS..........cooiiiiiiiiiiiii i, 47
Achieve Scannability (goal name = dft_scan_ready) ......cccccvvvvvviiiiiiiiiiiina.. 47
L4 o Yo - I I 10 7= o T o 48
DIagnose _teSTCIOCK .....ueee e 49
1 {0 I (=] (] [0 T 50
NS4 0 Lo O 1 15 7= o T Lo 50
ASYNC 08 debUQ .« e 51
[T =T | i Lo 17 = T €11 1 . o T [ 51
I {0 I (=] 1 T [ 52
INfo_scanwrap debug .......coooiiiiii i e 52
INFO_NOSCAN AEDUQ ...eeeiiii i et eeaeaaaas 52
Info_inferredNoscan debug ... e 52
Viewing the estimate of fault coverage of the design..........cccccooeeiiii.. 53
Ensure Compliance to DFT Best Practices (goal name = dft_best_practice) ..57
Review the stuck_at _coverage_audit report.........cccovvieiiiiiiiiiiiiiiiieenn. 57
Make flip-flops scannable ... s 59
Make Latches TransSparent.. ...t e e e e e eaeaeeees 59
Scan-wrap black DOXES .....coiiiiiiii i s 59
Combinational Loops Made Transparent .........cooviiiiiiiiiiiiiiiiieeeeeeaannns 60
Testmode/Tied pins made controllable ..., 60
Hanging nets made controllable ..o i 61
Tristate nets made observable ... ... 61
The force_ta nets and test_point constraint pins made testable.............. 61
The no-scan flip-flops made scannable.............coiiiiiiiiii 62
Using the Coverage_Audit report to ensure test operation ..................... 62
ASYNC_ 02 VIOIatioNS ... ettt 62
ASYNC_ 11 VIOIatioNS ... ettt 63
(@4 [0 ot S 0.7 RV T ] - 1 [0 o - 63
104 [0 Yot~ 0.5 2V T ] = 1 [0 0 = 64
104 [0 Yot~ K S TV T ] = 1 [0 0 64
104 [0 Yo Qi A2V T ] = 1 [0 0 65
104 [0 Yo~ IV T ] = 1 (o] 0 65
104 [0 Yot Q22 AV T ] = 1 (o] 0 = 65
104 [0 Yot~ < JV/ T ] = 1 [0 0 = 66
ST ot= 1 TR O 17 V/ Lo ] F= X ¥ T} o 1= 66
ST ot= 1 T2 T ] F= X € T g 1= 66
f o] o o] o Ta Y2 & 1S T/ [0 F= 1 f e ] o 1= 67
f o] o o] o Ta Y2 & L= 3/ [0 F= 1 f o] g 1= 67
f o] o o] o Te Y2 S TV T F= 1 f o] g 1= 67

Synopsys, Inc.



Tristate_06 VIOlatioNS ...ttt 67

Achieve BIST Readiness (goal name = dft_bist ready) .......ccccceeeeeiiiiiiiii. 68

Adding Testpoints (goal name = dft_test_points) .......cccoiiiiiiiiiiiiiiiiiiiann., 69

TA 09 debUG .. e 69

Validating Scan Chains (goal name = dft_scan_chain) .............................. 70

IS0 = 1 22 70

ST 0 = 1 222 70

ST 0x = 1 22 J 70

ST 0x = 1 22 70

1 {0 S o7= T 1o = 71

Verifying Test Signal Connections in Full-chip Designs (goal name =

o ) it W ] Lo Yo Qo 1= o 1) 71

Create test SGDC for FUI-CRIP ..o e 72

Subblock Check (goal name = dft_block _check) .......ccoooviiiiiiiiiiiiiiiii. 72
Creating and Validating an Abstract Model for a Block (goal names =

dft_abstract, dft_abstract_validate) .........ccooiiiiiiiiiiii e 73

Using Autofix/Selective AULOTiX ......cooeirriiiii i e ee e 74

AN 0 1= o |5 75

Vii

Synopsys, Inc.



viii

Synopsys, Inc.



~ Preface

About This Book

The SpyGlass® DFT methodology guide describes the flow for using the
DFT methodology.

Synopsys, Inc. -



Preface

Contents of This Book

Contents of This Book

The SpyGlass DFT methodology guide has the following sections:

Section Description

The Need for DFT-Optimized Design The need for DFT-optimized design

10
Synopsys, Inc.



Preface

Typographical Conventions

Typographical Conventions

This document uses the following typographical conventions:

To indicate

Convention Used

Program code

OUT <= IN;

Object names

ouT

Variables representing
objects names

<sig-name>

Message Active low signal name '<sig-name=>' must end
with _X.

Message location OUT <= IN;

Reworked example OUT_X <=IN;

with message removed

Important Information

NOTE: This rule...

The following table describes the syntax used in this document:

Syntax

Description

[ 1 (Square brackets)

An optional entry

{ } (Curly braces)

An entry that can be specified once or multiple
times

| (Vertical bar)

A list of choices out of which you can choose
one

... (Horizontal
ellipsis)

Other options that you can specify

11
Synopsys, Inc.



Preface

12

Typographical Conventions

Synopsys, Inc.



~ The Need for DFT-
Optimized Design

The Need for DFT-Optimized Design

Manufacturing test is performed by patterns automatically generated by
ATPG (Automatic Test Pattern Generation) tools. To operate effectively,
these tools require that the circuits be correctly designed for testing. This
document and the corresponding SpyGlass DFT software directly address

this issue.

13
Synopsys, Inc.



The Need for DFT-Optimized Design

The Need for DFT-Optimized Design

Introduction

Objective
The objective of this document is to describe a method to run SpyGlass
DFT that focuses on goals that are well matched with the requirements for
full scan testability.

Tool Versions

B SPYGLASS VERSION: N-2017.12-SP2
B DFT VERSION: N-2017.12-SP2
B GuideWare: 2017.12

References

B SpyGlass DFT User Guide
B Design Read Methodology Document

14
Synopsys, Inc.



The Need for DFT-Optimized Design

Document Overview

Document Overview

This document is organized as follows:

B The GuideWare Reference Methodology section describes the Guideware
method as well as prerequisites for applying GuideWare to DFT

B The Designing for Test section describes full scan design

B The Performing DFT Analysis using SpyGlass DFT section describes how the
rules built into SpyGlass addresses the requirements of full scan design

B The Step-by-step Solution section describes a step by step description for
using GuideWare to meet the specific goals for achieving high fault
coverage.

15
Synopsys, Inc.



The Need for DFT-Optimized Design

GuideWare Reference Methodology

GuideWare Reference Methodology

GuideWare Reference Methodology groups SpyGlass rules selected from
various SpyGlass product areas (including Lint, CDC, DFT, Power and
Constraints) into goals aligned with chip development process and
validating them for high impact. The GuideWare Reference Methodology
provides a jumpstart for design groups with SpyGlass goals readily usable
out-of-the-box at various phases of IC design flow (RTL, IP and Chip
Integration design phases). The GuideWare Reference Methodology can be
configured to map to customer specific design style and handoff
requirements. For more details of GuideWare Reference Methodology,
please refer to the documentation as part of this release installation.

Prerequisites

You are expected to have basic knowledge of SpyGlass operations.

SpyGlass DFT requires a clean design read. Please refer to the SpyGlass
Design Read-In Methodology guide for details.

The RTL also must be “lint” clean before analyzing for DFT. This can best be
done by using the GuideWare methodology. Please refer to the GuideWare
User Guide for details. However, if the user customizes these into different
local goals then they should ensure that all goals taken together include
those goals.

Synopsys, Inc.



The Need for DFT-Optimized Design

Designing for Test

Designing for Test

In order to understand the Guideware goals for test, it is necessary to
understand the basic design for test strategy followed by the most
electronic companies.

The ATPG tools in common used today are much more efficient for
processing combinational circuits than for sequential circuits. As a result,
the primary DFT approach commonly used is to implement full scan on the
design. Key objectives of this design method are:

B to allow any internal state necessary for testing to be achieved by
forming shift registers called scan chains

B to force latch enables to be active so that the latch may be treated as a
buffer

B to allow easy control of clocks so test results at internal nodes can be
captured

Scan Flip-flops and Chains

A typical scan flip-flop is shown in FIGURE 1. Scan Flip-flop. Scan flip-flops
are connected (see FIGURE 2. Scan Chain Segment) so that shift registers are
formed when the “SE” pin is set to 1.

A critical aspect of this shifting action is that shift clocks must reach the
scan flip-flops and the sets and resets must remain inactive regardless of
circuit state. A major part of SpyGlass DFT processing will be to achieve
these requirements.

17
Synopsys, Inc.



The Need for DFT-Optimized Design

sE

=l
Data

N

L~

FIGURE 1. Scan Flip-flop

Designing for Test

Data

Dat

FIGURE 2. Scan Chain Segment

Latch Transparency

Latches are state elements that can defeat combinational ATPG tools. Tests
for circuits such as shown in FIGURE 3. Latch Transparency, may require
signal propagation through latches. The appropriate DFT method is to

Synopsys, Inc.



The Need for DFT-Optimized Design

Designing for Test

design the latch enables so that the latch is forced active in capture mode.
In this way, the latch may be treated as a simple buffer by ATPG tools.

o oag
>
o &
oD
=
]
=
i L
atch
-

FIGURE 3. Latch Transparency

Capture

The waveforms in FIGURE 4. Waveforms for One ATPG Vector, are typically
used to shift tests into a circuit and to capture test data using these chains.
To perform the tests, the scan multiplexers, see FIGURE 1. Scan Flip-flop,
must be switched back to O so that the test results can be captured for
scan-out. The capture clock must be operated in the system mode and
therefore the circuit must be designed to guarantee that the capture pulses
reach the scan flip-flops regardless of the scan-in state.

19
Synopsys, Inc.



The Need for DFT-Optimized Design

Designing for Test

FIGURE 4. Waveforms for One ATPG Vector

The remaining sections of this document will describe how to use SpyGlass
DFT for these functions.

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Performing DFT Analysis using SpyGlass DFT

This section of the document describes the use of SpyGlass DFT for:

Verifying scan chains in gate-level netlist (see Verifying Scan Chains

Block-level designs (see the Creating and Validating an Abstract Model for a
Block (goal names = dft_abstract, dft_abstract_validate) section)

Verifying test signal connections in full-chip designs (see Verifying Test
Signal Connections in Full-chip Designs section)

The preferred flow is illustrated in FIGURE 5. Block-level Flow. Processing a
design in the order shown in the illustration helps to reduce the time to

complete the job, the number of test points (if any) and unnecessary

interactions with the tool.

( Block )

Create constraints for best practices,

testclocks, testmode signals, black
boxes, module by-pas=s and bi
directional ports and gain an
understanding of pos=ible steps to
increase coverage

¥

Enzure that flip-flops are scannable

¥

Enzure that latches are transparent
during capture

¥

U= e test points to raise coverage

FIGURE 5. Block-level Flow

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

DFT Setup

After completing the design read, use the reports generated by SpyGlass to
create a test setup environment.

This section explains the following topics:
B DFT Setup Manager

B Create Constraints for Bidirectional Ports

DFT Setup Manager

The DFT Setup Manager can be used to generate the necessary DFT
constraints for a design. The Setup Manager is accessible from the

Console’s GUI interface via the dft _setup goal. The setup manager
guides you through the various steps that help identify the following:

Black box resolution

Test clocks

Asynchronous set/reset signals
Test modes

PLL and clock shapers

Clock gating cells

Setting of no_scan, scan_wrap, and so on

For general information on Console Setup Managers and the Common
Design Setup, please refer to the SpyGlass Explorer User Guide.

The following sections detail the different test related constraints that are
relevant to run DFT specific goals:

M Define Initial Testclocks
M Define Initial Testmodes
B Use bypass Constraint for Modules with Internal bypass Logic

B Black Boxes— scan_wrap

Define Initial Testclocks

The information generated by DFT setup includes root-level pins that may

22
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

be system clocks. It often includes pins that are clock enables, so generally
the list cannot be used directly. If some of the pins in this list are
recognized as testclocks, they can be used as testclock constraints for
SpyGlass DFT.

For example, if sysClockA shown in the simple example in FIGURE 6. System
Clock Example is also a test clock, then the constraint for use by DFT is as
follows:

clock —name sysClockA -testclock

svsClockA

FIGURE 6. System Clock Example

DFT Setup manager automatically identifies system clocks, and allows user
to mark them as test clocks as applicable.

Define Initial Testmodes

The design setup also includes the pins that may be system set or reset
pins. Since controlling asynchronous pins is a key aspect of scan design,
this list may be used as a starting point in creating test_ mode constraints.

Scan design requires that flip-flop sets and resets must be disabled during
scan shifting. For example, in FIGURE 7. System Reset Example, the signal
resetDisable would be disabled in test mode by the following constraint:

test_mode —name resetDisable —value 1

23
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

resetDisable

FIGURE 7. System Reset Example

DFT Setup Manager can automatically identify all set/reset signals, and
derive test_mode constraints based on those signals — to hold them off
during scan-shift. Through the GUI File editor, user can add any additional
test constraints, or modify the automatically generated test constraints.

Use bypass Constraint for Modules with Internal bypass Logic

Some blocks, such as memories or complex IP blocks with BIST circuitry,
may be designed with "bypass" logic to provide a connection path from
block inputs directly to block outputs. Often RTL models for such blocks are
not available. The module_bypass constraint can be used to properly
handle these blocks within a larger design while running SpyGlass DFT.

For example, in the designh shown in FIGURE 8. Module with bypass, when the
signal “By-pass” = 1 then the Data-in port is directly connected to the
“Data-out” port. From a DFT point of view, the Data-out port can be
controlled by Data-in and the Data-in port can be observed by the Data-out
if a logical one is applied to By-pass. The module_bypass constraint can be
used as follows:

module_bypass —name modBP —bpin By-pass —value 1 —iport Data-
in —oport Data-out

Refer to the DFT User Guide section SpyGlass DFT Constraints Currently
Defined” for details on using this constraint.

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Using the module_bypass constraint will provide a more accurate black box

model and more accurate SpyGlass DFT results.

Ewss

Data-in
—

Data-out

FIGURE 8. Module with bypass

Black Boxes— scan_wrap

DFT Setup Manager reports all the black box modules in the design. If any

black box module in the design is known to be designed with internal

boundary scan chains, then the Setup Manager allows the user to identify

and create scan_wrap constraints for such modules. For example:

scan_wrap —hame IntRingBox

(See DFT User Guide section “SpyGlass DFT Constraints Currently Defined”

for details on using the scan_wrap constraint.)

NOTE: DFT Setup Manager currently only allows setting of scan_wrap constraints on
modules, and not on individual instances. To set this constraint on individual

instances, you can use the GUI file editor to add or modify these constraints in the

Setup Manager.

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Create Constraints for Bidirectional Ports

If the design has bidirectional 10 ports that are shared with test control
signals, then constraints must be defined to configure these ports so that
signals at the root level do propagate into the design. Use the
Diagnose_testclock and Diagnose_testmode rules to verify that the
testclocks and the test_mode constraints penetrate into the design without
bus contention. Test_mode constraints used for this purpose should be
declared for both scanshift and capture mode.

For example in FIGURE 9. Simple Bidirectional Connection, in order to use ctrl
as a testclock, the enaOut must have a value that tri-states the buffer. This

means that the test_mode constraint(s) must be written to ensure that
enaOut is 0 (assuming an active high tristate buffer) for both scanshift and

capture.
test_mode —name enalut —value 0O

w O
o

ctrl m—l

enalut

FIGURE 9. Simple Bidirectional Connection

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Steps to maximize fault coverage

Once the design constraints are in place it is useful to audit the design for
testability of the design. At this step one may find out the current test
status and possible steps that can be taken to improve the fault coverage.

This section explains the following topics:
Achieve Scannability

Make Latches Transparent

Compliance to DFT Best Practices
Preparing design for BIST

Adding Testpoints

Verifying Scan Chains

Verifying Test Signal Connections in Full-chip Designs

Achieve Scannability

The objective of this step is to refine the list (see Section Define Initial
Testclocks and Define Initial Testmodes) of clocks and testmode signals. This
is an important consideration, since successful SpyGlass DFT analysis
requires use of both logic simulation and testability analysis. Both of these
calculations require device representations at the generic gate level. These
analyses critically depend on having testclocks and test._mode constraints.
(See SpyGlass DFT User Guide section “Scannability and Testability.”)

Testclocks for scan

Test logic using scan design techniques requires operating the circuit in a
mode different from functional mode. System clocks that are internally
generated must be controlled in a well-defined way when test vectors are
applied. FIGURE 10. Derived Clock with bypass shows a case where sysClk
should be declared as a testclock and Clk_bypass should be declared as a
testmode signal with a value that selects sysCIk.

clock —name sysClk —testclock
test_mode —name Clk_bypass —value 1

27
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Clk_bypass

T - J o @
o .
T T
j i] 0
1
o

FIGURE 10. Derived Clock with bypass

FIGURE 11. PLL bypass shows a PLL that has been designed with a by-pass.
In such cases, the plIBypass should be declared as a test_mode with value
1 and sysClk should be declared as a testclock.

clock —name sysClk —testclock
test _mode —name pllBypass —value 1

pllBypass B

\d

sysClk > PLL |— |

FIGURE 11. PLL bypass

The dft_scan_ready goal is designed to detect and diagnose testclock

28
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

issues.

Asynchronous Sets and Resets for Scan

The asynchronous sets and resets must also be controlled by well-defined
root-level procedures. FIGURE 12. Reset bypass example shows an example
of derived asynchronous reset logic that feeds an active low reset pin that
has been bypassed with a resetDisable signal to force the reset to the
inactive state during scan shifting. In this case, resetDisable should be
declared in a test_mode constraint:

test _mode —name resetDisable —value 1 —scanshift

resetDisable EEEE=—

FIGURE 12. Reset bypass example

The dft _scan_ready goal is designed to detect and diagnose flip-flop
set and reset issues.

Make Latches Transparent

As mentioned earlier, ATPG tools are usually run in combinational mode so
that the flip-flop outputs can be easily controlled and the flip-flop inputs
can be easily observed. As a result, from an ATPG point of view, the scan
flip-flop outputs are treated as if they were primary inputs and the scan
flip-flop inputs are treated as if they were primary outputs.

Latches are also sequential devices and therefore pose a problem for
combinational ATPG. Instead of making latches scannable, latch enables

29
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

are designed to be forced active during the capture phase so that ATPG
tools may treat latches as simple buffers. If this condition is not satisfied,
any logic that requires such a latch or any logic that only feeds such a latch
will not be testable and coverage will be compromised.

FIGURE 13. DFT Logic to Force Latch Transparency shows an example of a latch
with an OR gate added to allow forcing of latch transparency. In this case,
the following constraint could be used:

test_mode —name forceTrans —value 1 —capture

The test_mode option “-capture” is used because the latch is only required
to be transparent for ATPG. Latches are transparent for ATPG when their
enable pin is active in the “off” state of the clock. Latch enables can be
“don’t care” during scan shifting.

svnene [ (]

farceTrans Emw—

FIGURE 13. DFT Logic to Force Latch Transparency

The dft best practice goal contains several rules designed to detect
and diagnose latch enable issues.

Compliance to DFT Best Practices

The following is a list of various structures that block ATPG tools from
achieving high coverage:

B Test clock also used as data
B Asynchronous combinatorial loop that is not broken during testmode
B Test clock also drives the set/reset pin of any flip-flop

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

B Tri-state bus enables are not ‘one-hot’ encoded
B Flip-flops have large fan-in cones

Designers can avoid these pitfalls by discovering such structural issues at
the RTL coding stage. They may check their designs for best DFT practices
even without testmode setup knowledge.

Preparing design for BIST

A design is BIST ready when no unknown values (“X”) are captured in the
scannable flip-flops of the design. This is because in BIST (Built-In-Self-
Test) designs, the scan output is compressed into a signature register, and
capturing unknown values will corrupt the signature. This can also be the
case when ATPG Compression is used, so you should consider running this
goal also for designs using such Compression techniques. This can be
achieved by removing all sources of X-propagation.

Adding Testpoints

If, after satisfying all prior steps, the coverage is not satisfactory, consider
adding test points to the design. A test for a specific fault requires that the
fault be both controllable and observable. Therefore, test coverage can be
potentially improved by Improving Observability or by Improving Controllability.
This can be achieved by adding observe or control testpoints.

The DFT rule TA_09 produces a coverage report that can be used as a
guide for test point selection. The final coverage listed in that report will be
achieved if all the testpoints are used. The coverage reported at an
intermediate point will be achieved if all testpoints listed up to that position
in the report are used. If a non-consecutive subset of the testpoints is
selected from the TA_09 report, then the resulting coverage may be
established by adding testpoint constraints for just the selected locations to
the sgdc file and rerunning.

TA_09 also produces an .sgdc with testpoint constraints for all nodes listed
in the coverage report. The coverage for any subset of testpoints can be
obtained by using testpoint constraints for any subset of testpoint locations
and rerunning SpyGlass DFT.

31
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Improving Observability

FIGURE 14. Unobservable Net illustrates a block of logic whose output net is
unobservable even though it fans out to multiple places. The lack of
observability may be due to black boxes, IPs designed without scan,
blocked paths or a variety of other causes.

Lnobserable

/ hiet

FIGURE 14. Unobservable Net

FIGURE 15. Observation Testpoint shows a scannable flip-flop added to
provide observability to an existing unobservable net.

=cannakle fip -flop
added to provide
obszreability

testd ock cLr 0

FIGURE 15. Observation Testpoint

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Improving Controllability

An example of a bad controllability situation is illustrated in FIGURE
16. Uncontrollable Net, where the net driven by “A” is uncontrollable. As a
result, the downstream logic is untestable.

Difficult to
Control net

Ai s

FIGURE 16. Uncontrollable Net

A fix for this case is shown in FIGURE 17. Flip-flop added for Controllability. The
added flip-flop is scannable so it is fully controllable. The signal “testmode”
will be held to “1” during capture so the point “B” is also fully controllable.

testmode
Difficult to
Control net
l scanin
— A
- D
si Ql—
d
se
Shift clock
v
scanout

FIGURE 17. Flip-flop added for Controllability

33
Synopsys, Inc.




The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Verifying Scan Chains

Scan chains are usually inserted into the design either during or after
synthesis. Using constraints to specify the scan pins and the scan enable
conditions, SpyGlass DFT can check the integrity of these chains post-
synthesis. Since SpyGlass DFT is designed for both RTL input as well as
netlist input, the integrity of these chains can be checked. This requires
using constraints to specify the scan pins and the scan enable condition.

Assume that FIGURE 18. Scan chain is a portion of a scan chain with scan-in
pin sinl, scan-out soutl and scan enable sel. The constraints for this chain
are:

scan_chain —scanin sinl —scanout soutl-scanenable chainl
define_tag —tag chainl —name sel —value 1

A define_tag constraint (see SpyGlass DFT User Guide section “SpyGlass
Constraints Currently Defined” for details) is used to define the conditions
to enable a chain. There can be as many such constraints as there are
distinct scan enable conditions.

A scan_chain constraint is used to define the scan-in port, the scan-out
port and the define_tag for this chain.

If different chains in a design have different scan enable conditions, then
multiple define_tag constraints are necessary. Scan_chain constraints for a
design with 4 chains are illustrated below.

scan_chain —scanin sinl —scanout soutl-scanenable chainl
define_tag —tag chainl —name sel —value 1
scan_chain —scanin sin2 —scanout sout2-scanenable chain2
define_tag —tag chain2 —name sel —value 1
scan_chain —scanin sin3 —scanout sout3-scanenable chain3
define_tag —tag chain3 —name sel —value 1
scan_chain —scanin sin4 —scanout sout4-scanenable chain4
define_tag —tag chain4 —name sel —value 1

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

To next
el = ccanFF
From la=t
scan FF
D &
Fundional
Connection =
o o 2 -
Fundional
Connection r}
]

FIGURE 18. Scan chain

Verifying Test Signal Connections in Full-chip Designs

The objective is to ensure that the constraints written for the full chip
satisfy the constraints already developed for the various blocks. The flow to
accomplish this verification is illustrated in FIGURE 19. Connection Verification

Flow.

35
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

@onneotion Verificatio@
¥

Create constraints to drive any

embedded test controllers and to gfeatte t_eit )
. onstraints tor
propagate signals from the controllers ———_ Chip

to the embedded blocks

v

. : Connection
Verify that all block.s_g_dc requirements Verification
are satisifed — Procedure

FIGURE 19. Connection Verification Flow

Create test Constraints for Full Chip

From a test point of view, sub-blocks are lower-level blocks that will be
processed as a single object by ATPG tools. Often the root-level setup
requirements will be unique for each sub-block. FIGURE 20. Test Connections
Checking shows an example of a chip with three sub-blocks and a common
test controller. In such cases, check test signal connections with the
following strategy:

B Verify that the test controller outputs can be driven to a state necessary
for a selected sub-block

B Verify that logical connections exist between the test controller and the
sub-block

B Verify that the sub-block gets the correct signals from the test controller

Repeat this process for each sub-block.

36
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

Step 1: Create controller input
sequence

Step 2: Verify correct controller
output state

Step 3: Verify connection from
controller to sub -block.

Step 4: Verify correct sub -
block input

c| &

Block 3 Block 2 Block 1

FIGURE 20. Test Connections Checking

Step 1: Drive Controller for a Block

Use define_tag constraints to specify a set of sequences on the test
controller inputs that drive the test controller to a state necessary to test a
sub-block. For information on using the define_tag constraint, refer to the
"SpyGlass DFT Design Constraints” section in the DFT User Guide.

Example:

define_tag —tag blockl -name top.A -value <sequence of values
for this port>

Step 2: Specify Controller Output

Use require_value constraints to specify values that the test controller
output should have for the input sequence created in Step 1. For
information on using the require_value constraint, refer to the “SpyGlass

37
Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

DFT Design Constraints” section in the DFT User Guide.
Example:

require_value -tag blockl —name top.controller.B -value
<final value expected on these pins for the input conditions
specified in a define_tag statement.

Step 3: Define Controller/Block Connection Paths

Use require_path constraints to specify the controller output port and the
sub-block input port that should be connected. For information on using
the require_path constraint, refer to the “SpyGlass DFT Design
Constraints” section in the DFT User Guide.

Example:

require_path -tag blockl -from top.controller.B —to
top.Block _1.C

Step 4: Specify Block Test Ports and Values

Use require_value constraints to specify the values that should be achieved
on the sub-block input port when the controller has the state created in
Step 1. For information on using the require_value constraint, refer to the
“SpyGlass DFT Design Constraints” section in the DFT User Guide.

Example:

require_value -tag blockl —name top.Block _1.C -value <final
value expected on these pins for the input conditions
specified in the define_tag statement in Step 1>

Connection Verification Procedure

The constraint file described in the Create test Constraints for Full Chip section
can be used to verify that the block-level requirements are satisfied. Note
that if the test controller logic allows only one sub-block at a time to be
tested, then a separate constraint file for each sub-block is required and
multiple runs must be used.

The flow shown in FIGURE 21. Test Connection Verification Procedure is a step-
by-step process:

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

B Verify that the proper controller outputs for a given sub-block are
achieved.

B Verify that paths exist from the controller to the given sub-block.
B Verify that the values required at the sub-block inputs are satisfied.

Debug controller

No—p design or )

define_tag
definition

est contro
requireValue
satisfied?

Yes

Debug path from
controller to sub-
block or define_tag
definition

No—P»|

satisfied?

Yes

Debug path from
controller to sub-
block or define_tag
definition

requireValue
satisfied?

No-P»|

Yes

FIGURE 21. Test Connection Verification Procedure

39

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

GuideWare Methodology for DFT

The SpyGlass GuideWare methodology describes two fields of use: Block
and SoC design.

Block Field of use: In this field of use, checks and goals are organized to
align with the evolution and the maturity of new or re-used RTL blocks.

SoC Field of Use: The SoC integration phase includes stitching of the new
RTL blocks or IPs. This field of use is divided into the following stages:
Initial RTL, RTL handoff, Netlist handoff, and Layout handoff.

For a typical RTL to layout design flow, SpyGlass DFT offers the following
goals:

Pre-DFT Design Stage (RTL, IP, Netlist)

B Check for DFT-Readiness of the design. This is achieved by the following
goals:

0O dft_scan_ ready: to ensure that all registers in the design can be
scanned

O dft_best practice: to ensure high testability, check for
estimated stuck_at fault-coverage, and means to improve it to reach
the desired target

0O dft_test points: to insert test points to improve testability

O dft_abstract: to create a simplified abstract model of the block
that can be used in lieu of the original RTL for efficient rule checking
at the top/SoC level

Post-DFT Design Stage (IP, Netlist, SOC)

B For post DFT stage of the design, SpyGlass DFT offers checking using
the following goals:

0O dft_block_check: to validate the test constraints of embedded
blocks

O dft_scan_ chain: to validate the scan chain connectivity through
the design

0O dft_abstract validate: when using abstract models for one
or more lower level blocks, verifies that the constraints under which
the abstraction was done are met in the current design

The following tables show how the GuideWare fields of use correspond to

Synopsys, Inc.



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

the DFT goals. The tables below use the following convention:

B M: Mandatory

B O: Optional (Optional goals can be accessed from Tools/
Methodology Configuration menu in Console GUI)

TABLE 1 DFT: New RTL

GuideWare Goals Q o o o a
= - oy -+ -
Stage A I
%) » ~
c § § 8 g
c o] a |"" 9
ho] | | 5 =
= ie) QJ
[} S =} Q
® 2 3 ~
Q S 7
< s
o
initial_rtl o M
rtl_handoff o M M (0]
netlist_handoff O M M o M

ureyos ueods Yp

Synopsys, Inc.

41



The Need for DFT-Optimized Design

Performing DFT Analysis using SpyGlass DFT

TABLE 2 DFT: SoC

GuideWare Stage Goals o O o o a o a o
I:p I: I:r In In In I':p I':p

8 8§ 588 28

g 2 0 & o 2 8 q

o ~ -+ o] Q =

o | | | = | A -

= O O Q o | @

o = O 9 ¥ o 9

o ® 3 T 3 I 7

s 2 z 5 8 <

< 5 ~ £

® o

Q

-+

o

initial_rtl O M M o]
rtl_handoff O M M O M O O
netlist_handoff O M M O M O O O
layout_handoff O M M O O O O

42

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Step-by-step Solution

This section will describe the steps for using SpyGlass DFT in some detail.

Setup for DFT (goal name = dft_setup)

Run the setup for the dft_setup goal. This will help you to create the DFT
constraints for your design, including:

black box resolution

test clocks

asynchronous set/reset signals
test modes

PLL and clock shapers

clock gating cells
B setting of no_scan, scan_wrap, and so on

fua / MITERNLE CONSOIE - P ra|ECt-1.BF) - %

Eile Edit Bun Tools Help #, Search 3] In [Session Leg 3 Go

Select Goal | Central Setup | Setup Goal |

« B Setup Steps |
LIDFT setup Introduction DFT311

|_|Resalve Blackboxes

[IDesign Clocks The next few steps in the Setup Manager will guide you through badk-box

["1Design Resets identification, clocks identfication, reset/testmode signals Identification, and the
. . necessary DFT constraints that may be applicabla 1o the design.
[ Test Signals

[ Blackiox Test
|| Dont Sean

|| Setup Clasure Copyright 2001-2009 Atrénta, Ine,

| Setup Status
Progress i

Show Summiry Page

& @ | & new | v cuose

2 Session Log

gy Language hode: Mied |y

FIGURE 22. Setup for DFT

43

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

To identify all the clocks in the design, select “ldentify potential clocks in
the design” tab during “Design Clocks” step, as shown below.

hd Atrenta Console - Project-1.prj ™ =1k
File Edit Bun Tools Help #, Search | ﬁ In [Session Log g Go
(|t PN o

« i Setup Steps

Select Goal | Central Setup | Setup Goal |

[DFT setup introduction

M Resolve Blackboxes

[IDesign Clocks

[[1Design Resets
[JTest Signals
[[]Blackbox Test
[“1Dont Scan
[JSetup Closure

Setup Status

Progress|Hll 25%

Show Summary Page

clocks

- Provide SGDC files,

Provide existing SGDC file(s) with clocks, resets and other relevant constraints, if
you have any. Note that you can use constraints created for other SpyGlass

products,

- Provide SGDC schema files to impart constraints from SDC files
Provide existing SGDC filefs) with sdeschema and other relevant consfraints o £

Do you have any SGDC files?

Provide existing SGDC files or enable auto-detection of J

Do you want to import constraints from SDC files?

Identify potential clocks used in the design?

-~ Yes # Mo

Q-} Restart

=) Eackl = Nextl

v Close

FIGURE 23. Design Clocks

Select this for automatic
clock identification

This will bring up a window with different design clocks. Make sure to mark
a design clock as a test clock under “DFT Mode” column, as shown below.

Edge” Clock Type” Clock Cunes” Mux Selects” LatchfFIup“ Source ” DFT Mode I] Auldit]
Primary =] 3 Both Auto-Inferred lﬁﬂ
Black-Box & 3 Both Auto-Inferred
Primary 1 0 Flop Auto-Inferred |testclock
Primary 1 a Flop Auto-Inferred atspeed testelock
Primar. 1 n Flnn A1itn-1nferrer

Mark test clocks

FIGURE 24. Selecting DFT Mode

44

The step marked as “Design Resets” can be used to automatically identify
async set/reset signals in the design.

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

hd ~trenta Console - Project-1.prj = Ali=1:]
File Edit Bun Tools Help #, Search | 3| InSession Log ¥ Go

Design Setup Goal Setup & Run Analyze Results
Select Goal | Central Setup I Setup Goal

« i Setup Steps |

IDFT setup introduction Resets
M Resolve Blackhoxes

Design Clock:
IES'QH ..... oo In this step, you can setup asynchronous resets of the design.
[]Design Resets

SpyGlass extracts asynchronous resets of the design in

[ Test Signals autoresets.sgdc. Here, vou can review, edit, and finalize the reset
[[]Blackhox Test constraints.
[JDont Scan

[JSetup Closure

Setup Status

Progress | HEEN 7 || Edit and complete reset constraints? Yes Skip |

Show Summary Page

Q-Q Restart <a Backl s Mot | v Close |

FIGURE 25. Design Resets

Any async set/reset automatically gets defined as a test mode signal of the
opposite active value (to keep them disabled during scan-shift). Any
additional test signals can be directly added in the test-mode file (the left-
most window shown below).

45

Synopsys, Inc.



The Need for DFT-Optimized Design

Select Goal | Central Setup I Setup Goal

« [ Setup Steps

| 4 Add SGDC File(s).. % Delete File

Step-by-step Solution

Edlit File: dft_testrmodes.sgdc

IDFT setup introduction
[HResolve Blackboxes

[ Design Clocks

[ Desigh Resets

File

ﬂ Status

current_design "RefDesCore”
testmode -name "RefDesCore.rstl00" -wal

D autoresets sgdc

D auto_case_analysis.sgdc Enabled for Goal

testmode -name "RefDesCore. dftreset" -w

Enabled for Goal

D dft_testmodes.sgde

\

Add any additional test

Enabled for Goal

D cdc_setup_clocks.sgdc

[_ITest Signals

[[]Blackbox Test
[[1Dont Scan
[Isetup Closure

Setup Status

Progress | HHEEN S0%

Show Summary Page

Enabled for Goal mode signals here

|l
B e | B 0D

=

R I

-

v Close

@ Restar‘tl ] Backl B Next |

FIGURE 26. Adding additional test signals

The next step in the DFT Setup Manager will let user define various other
constraints — usually applicable to black boxes in the design, such as PLL,
clock_shaper, scan_wrap, gating_cell, and so on.

Finally, you can identify modules with no_scan constraint, and close the
setup manager by saving the created SGDC constraint files. Make sure that
the generated SGDC constraint files are enabled for any DFT goal that you
run on the design. If necessary, you can regenerate these files, or edit
them prior to running any goal through the Setup Manager.

If you are not using Console GUI and DFT Setup Manager, you can use the
following steps to manually create the necessary setup for DFT analysis.

Create necessary clock Constraints

Identify all test clocks in the design using testclock constraint. For
example:

clock —name tClkl —testclock

46

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Create necessary test_mode Constraints

Identify the test mode signals using test mode constraint. Note that in
addition to the normal test signals, you also need to declare set/reset
signals as testmode signals. Set/reset signals are normally held off during
scan shift operation.

For example, if the design has the following set/reset signal constraints -

reset -name "'RefDesCore.rstl100" -value 0O
reset -name "'RefDesCore.dftreset” -value 0O

Here the values indicate the ‘active’ value for reset. We will need to ensure
that the signals that are acting as ‘reset’ are ‘inactive’ during scanshift
mode. So we need to generate the following constraints (note the ‘inactive’
values):

test_mode -name "‘RefDesCore.rst100" -value 1 -scanshift
test mode -name '"RefDesCore.dftreset” -value 1 -scanshift

Skip this step of creation of ‘test_mode’ constraints if they are already
known.

Achieve Scannability (goal name = dft_scan_ready)

B Run the dft_scan ready goal.
B A flip-flop is considered as scannable if during scanshift:

3 its clock can be controlled by a test clock (checked by DFT rule
Clock_11) and

O its set and reset pins (if any) are forced inactive (checked by DFT rule
Async_07)

B These two rules may be violated either because test logic has not yet
been designed in or because the constraint file has missing or incorrect
entries. If there are violations of either rule, then diagnostic rules
Diagnose_testclock and Diagnose_testmode can be used to diagnose
the cause.

B Any non-scannable flip-flop will reduce the coverage for logic that only
feeds that flip-flop as well as logic that is only driven by that flip-flop.

47
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B The dft_scan_ready goal also checks that testmode signals that
only control asynchronous set or reset pins should be unrestricted
during capture. (checked by DFT rule Async_08)

O Restricting such a dedicated signal would result in the set/reset nets
not being tested thoroughly.

O Such a violation can be fixed by adding the -scanshift argument
to the test mode constraint to indicate that the constraint only
applies during shifting and is a don’t care otherwise.

Clock_11 Debug

Clock_11 violations detect clock sources (see the description of Clock_11 in
the SpyGlass DFT User Guide section on Clock Rules) that are not
controlled by testclocks. Each violation indicates the number of flip-flops
clocked by this source. Selecting any violation will highlight the source on

the schematic. The following is an example shown in the Incremental
Schematic.

‘s Atrenta Console - Project-1.prj *

id ncremental Schematic @ usbi_top
Eile Edit Bun Tools Help Fle Edt View Help
[ Cuwswm g é|;.|,_;|‘_~.|2| @ o || 20| el

MF" Run the goal analysis and debug design

O Run Goal: DF T/Scan_ready =t Hide HOL —_—

» | L EdFie | usbilopv | usb{_top.sg
ELt

= Print File —|| ohy_ch pad i o—~ phy_cki P
qn bbk ] i |
3 2 l |
8 33 S/ s/anjos R |
3 I wice SB
2 5 ']
2 36 | < | =
= ;s .,- F
& Reparts = | Vigw: [Msg Tree 3 /

=] I

. rssage Tree ( 1| |
& heid Tag =] |’;| Message Tree | |
7 Delete Tag B

1 Modiy Tag Ecu
=t
& Eodular. b
& B Incremen.. controlled by tes! -
T Walver ‘“}m‘dl ‘est clock stops at ‘ushi_top.And gate’].
=)

Session Log |
h gy Fun Status: Run Complete |

FIGURE 27. Clock_11 violations

The testclock propagation through the ‘Show Case Analysis’ mechanism

48
Synopsys, Inc.




The Need for DFT-Optimized Design

Step-by-step Solution

appears automatically in the schematic.

Points that block testclock propagation will have a pulse symbol, that is,
either a ™ or a v, on a device input but no clock pulse symbol on the device
output:

But, NO
testclock here

‘M denotes the
testclock here

A A
phy_clk_pad_i[ >—— phy_clk}_

-------------

Set‘testmode’
constraint
(value=1) here?

FIGURE 28. Show Case Analysis

In this example, the bottom input to the AND gate should be held at ‘1’ to
enable the clock to pass through. Hover the cursor on such a pin. Then,
right-click and select Show Input Cone option to either primary inputs or
flip-flops. Apply one or more constraints so that the device input pin has a
value that will enable the clock path.

Diagnose_testclock

B Select a violation and display in the IS

B The testclock source and a node that blocks testclock propagation are
displayed

B The input pin on the blocking and the value on that pin are also

displayed
49
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B Right clicking on that pin and selecting “Show input cone” can be used
to display the logic driving the blocking pin

B Right clicking and selecting “Show debug data” and then selecting “DFT”
will display values on a pin

B Use this data to determine how the clock was blocked and where
constraints or the blocking logic could be modified

Info_testclock

This rule displays testclock propagation for both scanshift and capture
testmode.

B Select the violation message for scanshift if there are Clock_11
violations and display in the IS

B Select the violation message for capture if there are Clock_11 capture
violations and display in the IS

B The display will show either “~” for positive going clock pulse or a “V”
for a negative going pulse

B The displayed propagation may be useful to determine how a testclock
is reaching a particular or why a particular phase of a testclock is
created

Async_07 Debug

Async_07 violations detect async sources (see the description of Async_07
in the SpyGlass DFT User Guide section on Asynchronous Rules) that are
not rendered inactive during scanshift.

B Select a violation and display in the MS.

B The testmode value propagation appears automatically on the
schematic.

B Visually find out the root cause why the async source of the flip-flops is
held at ‘X’ or at the active value. This will lead to the conclusion about
how possibly a test_mode constraint can be applied to rectify the
Async_07 violation.

In the example below, the schematic shows no constraint was applied on
the rst input pin of the design:

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Ve B0 e b
IR =L

us

dout_reg
SH DID Q
=Y L CP
ric_I3 | FF_USCN_CP_RST
=t rst Py 4
usbf_wb

FIGURE 29. Async_07 violations

Async_08 debug

Async_08 detects connections to scannable flip-flop set or reset pins that
are not fully controllable.

B Select a violation and display in the IS.

B The schematic will be back annotated with testmode capture conditions
and include the effects of power and ground

B Use the displayed controllability values to determine the root cause for
the incomplete controllability (nn-, ny- or yn-) at the flip-flop set or rest

pin
B Consider changing a constraint or possibly modifying the design

Diagnose_testmode

B Select a violation and display in the IS

B Right click on a highlighted pin to see the values forced on that pin by
either a testmode constraint or the result of a power or ground
simulation

NOTE: Since Diagnose_testmode identifies blocking gates, debug data will not be displayed
on module boundaries. The display only operates on primitive gate input pins.

51
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B Use “Show input cone” to trace to the source of the fixed value
B Consider either changing a constraint or possibly modifying the logic

Info_testmode

B Select a violation and display in the IS

B The IS schematic will show all signals with non-x testmode values and
therefore this may be difficult to use in large designs; in that case
Diagnose_testmode may be more practical

B The values forced by either a testmode constraint or the result of a
power or ground simulation

B This information may be useful to ensure that testmode is operating as
required

Info_scanwrap debug

This informational rule lists design units that are declared in a scanwrap
constraint but the enable pin, declared in the scanwrap constraint, is not
active. Display the design unit and use Info_testmode. Trace the fanin cone
of the enable pin to determine what change is required to force an enable
value on this pin.

Info_noscan debug
This rule displays flip-flops that have been declared as noscan by a noscan
constraint.

This rule may be useful when trying to determine why faults are
uncontrollable or unobservable. Both conditions are necessary for fault
detection.

Info_inferredNoscan debug

This rule displays flip-flops that have been inferred as noscan. This rule
may be useful when trying to determine why faults are uncontrollable or
unobservable. Both conditions are necessary for fault detection.

52
Synopsys, Inc.




The Need for DFT-Optimized Design

Step-by-step Solution

A flip-flop is inferred as noscan if it feed an asynchronous pin of another
flip-flop or has a specified value from a testmode constraint on it’s output.

The reasons are:
B The clock -testclock constraint is specified on its output.
B The test_mode constraint is specified on its output.

B It's output gets a non-X ('0") test_mode value through sequential
propagation

B It is driving an asynchronous pin of a scan flip-flop.
This rule may be useful when trying to determine why faults are

uncontrollable or unobservable. Both conditions are necessary for fault
detection.

Viewing the estimate of fault coverage of the design

The rule Info_coverage estimates the fault/test coverage of the design.
The generated reports help in understanding the test health of the design.
The following fault browser helps understand the relative testability scores
achieved in the design.

53
Synopsys, Inc.



The Need for DFT-Optimized Design

B »

File

Stuck-At Coverage Report

SpyGlass Fault Browser

Step-by-step Solution

4
P
»

Stuck-At Coverage Report ]

ghoFna| [T 3@

=| % Configure Columns |

Legend #

I

Instance Hieran| Module Mar| Fault Cove | Test Cover| Fault Cove| Test Covere| Total Fault| Undetected |
B izar izar 98.54 98.54 1.06 1.06 330602 1351 75_a0%
-kernel_test kernel_test 67.21 67.21 0.70 0.70 7014 1079
“kemel kemel 9956 99.56 0.33 0.33 323085 a7z -
Bl-picu_t  btlcu_top 99.71 99,71 011 011 123686 326 -
Bt et 98.38 98.38 0.08 0.08 16466 214
Bl-ptasp bitasp 93.40 39.40 0.0 0.06 33945 194
H-crm_to crm_top 98.75 95.75 0.03 0.03 B724 oh
Hopir hif 99.63 99.63 0.0z 0.0z 18615 36
B-arm?_p arm?_pd 99.97 99.97 0.03 0.03 117454 36
Bz 5 55ix 99.56 99.66 0.00 0.00 26E0 4
[, e a4 £E o4 cC nonn non 110 = Configure...
| I
FIGURE 30. Fault coverage of the design
The following summary reported generated at this stage helps understand
the fault status.
54

Synopsys, Inc.




The Need for DFT-Optimized Design

Step-by-step Solution

BBl tucketcoengerport NN
B Save = Print #, Find 3 &)
< »TOP MODULE SUHMARY for “izac’ I
Pault Heads | Total | Ports | Intsrnal |
Total fault pins | 176618 250 175268 |
faults | 20434 | ay 20434 |
Faults Considered | 30602 500 330102
Inferced-NoFault (INF) I o) | 0
Un-Used (TU) I 2] 21 0]
Tied ¢TI} | ]| 7] 0
Elocked (BL) | il aj aj
Logical Redundant faults (LR} | 0] 0] 0]
Un-Testable (UT) | 1542 93] 1444
Detectable (OT) | 327107 4007 326707
Un-Detectable (IDT) | 1851 il 18951
Potential Detectable (PT) | 1g) i1} 18]
ATPG credit | 0. 00 0. 00 0.00]
POSOETECT credit | 0.00) 0.00] 0. 00|
Fault-coverage(in %) | 03.9] 0.0 9.0
Test-coverage (in %) | 93.9 203 99.0)
Coverage Sunnacy for each Instance:
Colunns IT SR j3H r TI BL LE 1
< »TOF MODULE ‘dizac'
AT Temk o /
-l i -

FIGURE 31. Fault status

You can generate a detailed fault report by setting the
dftGenerateStuckAtFaultReport parameter using the following command:

set_parameter dftGenerateStuckAtFaultReport all

55

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B #* stuck_at_faults report -
= Save = Print #, Find ﬂ@ll
fault type status cell-type hier /pin/name
<:Listing 'all' favlts for design unit 'sgolkn_seq hiwt 16°

5/0 DT primarcy_input ck
5/1 DT primarcy_input ck
5/ DT primarcy_input it
5/1 DT primarcy_input it
5/ DT primarcy_input SE
5/1 DT primarcy_input SE
5/ DT primary_output gck
5.1 0T primary_output qol
5/ DT and sgclkn_seq hiwvt 16 rtle IS
5/1 DT and sgclkn_seq hivt 16 rtle IS
5/ DT and sgclkn_seq hivt 16 rtle IS
5/1 DT and sgclkn_seq hivt 16 rtle IS
5/ DT and sgclkn_seq hivt 16 rtle IS
5/1 DT and sgclkn_seq hivt 16 rtle IS
50 0T or sgclln seq hiwt 16, rtlc I3
5/1 DT oL sgclkn_seq hivt 16 rtle I3
5/ DT oL sgclkn_seq hivt 16 rtle I3
5/1 DT oL sgclkn_seq hivt 16 rtle I3
5/ DT oL sgclkn_seq hivt 16 rtle I3
5/1 DT oL sgclkn_seq hivt 16 rtle I3
5/ DT latch sgclln_seq hiwt 16, gok_int
571 0T latch sgolkn_seq hiwt 16, gok_int
5/ DT latch sgclkn_seq hiwt 16, gok_int
5/1 DT latch sgclkn_seq hiwt 16, gok_int
5/ DT latch sgclln_seq hiwt 16, gok_intf—
541 OT latch sqclkn seq hivt 16, gok ink f

LN I ---’ A

FIGURE 32. Detailed fault report

56
Synopsys, Inc



The Need for DFT-Optimized Design

Step-by-step Solution

Ensure Compliance to DFT Best Practices (goal name =
dft_best_practice)
To ensure compliance to the DFT best practices, perform the following
steps:
1. Run the dft_best_practice goal.
2. Review the stuck at_coverage_ audit report.

Review the stuck_at_coverage_audit report

Use the stuck at_coverage_ audit report to increase coverage.

The objective of the first section of this report is to increase coverage. The
objective of the second section of this report is to ensure that ATPG
generated tests operate as expected.

The following figure illustrates an example of the first section of this report:

57
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

E * stuck_at_coverage_audit report * x
5] Save = Print #, Find 3 9
<» For Top Module 'sgcllkn_seg hivt 16° I

EBaze stuck-at fault cowerage :100.0
Ease stuck-at test cowverage :100.0

Expected stuck-at coverage data after each step.
Expected stuck-at cowverage

0. Original Design 100.a 1o00.0 No DFT changes are made. It a
'force_scan' declared flip-f!
Use Info_forcedScan to detec

flip-flops
1. PIs and POs made
controllable & ohservable 100.0 100.0 No action required
2. Flip-flops made scannable 100.0 100.0 No action required
3. Scan-wrap hlack hoxes 100.0 100.0 No action required
4. Latches made Transparent 100.a 100.0 No action required
L. Combinational Loops made
controllable 100.0 100.0 No action required
6. Testmode/Tied pins made
controllable 100.0 100.0 Info_synthRedundant, Info_un
and Info_pwrGndSim.
Bdd -scanshift switch to tes
constraint, if appropriate
T. Hanging nets made controllable  100.0 1o00.0 No action required
8. Tristate enshles made ochserwable 100.0 100.0 Ho action required
9. 'force_ta' and 'test_point'
constraint pins made testable 100.a 1o00.0 Mo action required
10. 'no_scan' flip-flops made
scannable 100.0 100.0 No action required

bkl sh ok b ol s b b B bl b b sH ol s b sHE bl b b sH AR s bl Rt oA ol s b b AR s bl sHE b b oAl s b s oA oA sHE b oA oAl s b oAl oA sHE b A AR b AL oA b oA A SR b ol oAl ot o R oA AL A M ok f

P~ [ -

FIGURE 33. Example of the stuck_at_coverage_audit report

The report indicates the current coverage for the design and the steps that
you need to follow to improve the coverage. The following sections, listed
in report order, describe the diagnostic procedure for each fault category in
the report.

58

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Make flip-flops scannable

B Flip-flop scannability depends on the flip-flop clocked by a testclock and
having it’s set and reset pins disabled in scan shift mode.

B See section Clock_11 Debug for a flip-flop that is not clocked by a
testclock during scan shift.

B See section Async_07 Debug for a flip-flop with set or rest pins not forced
inactive during scan shift.

Make Latches Transparent

B The Latch_08 rule detects latches that are not transparent in the
capture mode. You can use the Info_testmode rule for capture to detect
the non-transparent latches.

B Select and double-click a Latch_08 violation to view the corresponding
Incremental Schematic.

B If the latch enable has a non-X but an inactive value then either a
test_mode constraint should have the complementary value, or some
device in the fan-in to this latch enable should produce the
complementary value.

B If the latch enable has no value, then either the logic feeding this enable
should be modified (see FIGURE 12. Reset bypass example for an example)
so that the enable is forced active during capture or new test_mode
constraints must be defined.

Scan-wrap black boxes

B Select and double-click a Info_scanwrap violation to view the
corresponding Incremental Schematic.

Right click and select ”"Set SGDC constraints on module” which will
invoke the SGDC Constraint Editor

Set the Select Constraint box to scan_wrap
Enter the black box module name

Enter the pin(s) that control the scan wrapper

Enter the value(s) that causes the wrapper to enter scan mode

Synopsys, Inc. H



The Need for DFT-Optimized Design

Step-by-step Solution

When finished, click “Append” to add the newly created constraint to the
SGDC

Rerun SpyGlass

Combinational Loops Made Transparent

Select and double-click a Topology_ 01 violation to view the
corresponding Incremental Schematic

The circuit or constraints must be modified so the loop is broken during
capture

The logic driving loop inputs can be traced by right clicking a loop input

Constraints may be added by right clicking on a net driving a loop input
and selecting Set SGDC constraints

Testmode/Tied pins made controllable

Select Info_untestable and then click on Incremental Schematic to view
faults blocked by testmode constraints

Consider modifying a constraint on the pin listed in the violation
message

Select Info_Info_synthRedundant and then click on Incremental
Schematic to view faults blocked by connections to power or ground

Consider modifying the logic

Info_Untestable debug

This rule displays faults rendered untestable due to blocking by a
testmode signal or forced to a constant value by a testmode signal.
Blocked faults are marked as BL and tied faults are marked as TI.
Marking will be displayed as xx/yy where xx and yy are BL, Tl or blank.
For example, a node is TI/BL if the stuck at O fault on this node is Tl and
the stuck at 1 fault on this node is BL. A node is /Tl if the stuck @ O fault
is testable and the stuck at 1 fault is tied.

This rule does not necessarily imply a problem. It is available so that all
faults may be accounted for.

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B TI (Tied) and BL (Blocked) faults are caused by only power-ground
simulation. Faults which are blocked by test_mode are marked as “ND
or IDT” (Not Detected). Fault on the node itself (on which test_mode is
specified) is marked as “UT (untestable)”

Info_SynthRedundant debug

B If the source files are RTL, then this rule detects logic that is likely to be
removed by synthesis and therefore faults in this logic can be ignored
since they are excluded from both the fault coverage calculation and the
test coverage calculation

B If the source files are at the netlist level and therefore obtained after
synthesis then synthesis redundancies have already been removed. In
this case, Info_Synthredundant detects faults that are untestable due to
blocked paths caused by connections tied to ground

B In either case, there is usually nothing wrong with the design. This rule
is available so that all faults may be accounted for

Hanging nets made controllable

B Select and double-click a TA_09 violation to view the corresponding
Incremental Schematic

B The violation message identifies the module and the unconnected pin
B Consider adding a test point to the pin or modifying the module design

Tristate nets made observable
B Select and double-click a TA_09 violation to view the corresponding
Incremental Schematic

B Consider adding an observation test point to the enable net or adding a
pullup to the tristate output

The force_ta nets and test_point constraint pins made testable

B Check sgdc file

B Use Info_uncontrollable to identify uncontrollable nets. Consider
changing the force_ta constraint or modifying the fanout of force_ta pin

61
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B Use Info_unobservable
Info_uncontrollable debug

B This rule displays the controllability status for nodes that are not
completely controllable during capture. Uncontrollability is displayed as
three y or n characters. For example, a node is ynn if it can be
controlled to O but cannot be controlled to a 1 or to z

B This rule does not necessarily imply a problem. It is available to help
understand the reason that faults are not testable

Info_unobservable debug

B This rule displays nodes that are not observable during capture.
Unobservability is displayed as N

B This rule does not necessarily imply a problem. It is to help understand
the reason that faults are not testable

The no-scan flip-flops made scannable

B Select and double-click a Info_noscan violation to view the
corresponding Incremental Schematic

B Consider removing the noscan constraint

Using the Coverage_Audit report to ensure test operation

The second section of the Audit-Coverage report covers rules that detect
conditions which, if not fixed, can prevent ATPG tests from operating as
expected. As a result, actual coverage may be less than the result
predicted by ATPG tools or tests may fail even when a chip is operating
correctly.

The rules in this section of the report are sorted by the number of flip-flops
affected by each rule. Flip-flop count is used instead of computing possible
change in coverage because of runtime consideration.

Async_02 violations

B Select an Async_02 violation and view results in Incremental Schematic.

62
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B A path from a flip-flop output to a flip-flop set or reset pin is displayed.

The displayed path should be blocked in the capture mode.

B Hovering the cursor over any non-path input and schematic log window
displays information about this input.

B Double click on this input to display it's fanin cone

B Eliminate this violation by either using testmode to block this path or by
changing the logic

Async_11 violations

B Select an Async_11 violation opens a spreadsheet viewer window

B The spreadsheet lists all the data pins and all the flip-flop set or reset
pins reached by this violation

NOTE: An Async_11 violation occurs when a pin fans out to at least one flip-flop data
pin and at least one flip-flop set or reset pin as a violation. To fix a violation, all
paths to data pins must be blocked or all paths to set/reset pins must be
blocked.

NOTE: Usually, the easiest way to fix an Async_11 violation is to select the pin type
(either data or set/reset) with the fewest number of destinations. In this way,
we would expect to have to make the fewest number of changes.

B Select a pin and click on Incremental Schematic

B A path from the violation source pin to either a data pin or a set/reset
pin will be displayed

B The displayed path should be blocked in the capture mode.

B Hover the cursor over any non- path input and schematic log window
will provide information about this input

B Double click on this input to display it's fanin cone
B Eliminate this violation by either using testmode to block this path or by

changing the logic
Clock_04 violations

B Select a Clock 04 violation that opens a spreadsheet viewer window
B The spreadsheet will list all clock pins that are used as data pins

63
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

B Select a pin in the spreadsheet and click on the Incremental Schematic
B A path from the clock and the path to a flip-flop d-pin is displayed

NOTE: A clock_04 violation occurs for any pin declared in a clock constraint with an
unblocked path to a flip-flop d-pin regardless of whether or not this pin is
actually used as a clock.

B Hover the cursor over any non- path input and schematic log window
will provide information about this input

B Double-click on this input to display it's fanin cone

B Eliminate this violation by either using testmode to block this path,
changing the logic or removing the clock constraint

Clock_08 violations

B Select a Clock 08 violation
B A path from a clock to a flip-flop d-pin is displayed

NOTE: A clock_08 violation occurs for any pin declared in a clock constraint with an
unblocked path to a flip-flop d-pin regardless of whether or not this pin is
actually used as a clock.

B Hover the cursor over any non-path input and schematic log window
provides information about this input

B Double click on an input to display it's fan-in cone

B Eliminate Clock_08 violations by using testmode to block this path,
changing the logic or removing the clock constraint

Clock_16 violations

B Select a Clock_16 violation

B Paths with opposite inversion parity from a clock to flip-flop d-pins is
displayed

B Hover the cursor over any non-path input and schematic log displays
information about this input

B Double-click on an input to display it's fan-in cone

B Eliminate Clock_16 violations by changing the clock logic so that
inversion is removed during capture or use testmode to block this path

H Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Clock_17 violations

B Select a Clock_17 violation

B Paths from a clock to flip-flop whose output gates the same clock to a
second flip-flop is displayed

B Hover the cursor over any non- path input and schematic log window
will provide information about this input

B Double-click on an input to display it's fan-in cone

B Eliminate Clock_17 violations by changing the clock logic so that the
clock gating path is blocked during capture

Clock_21 violations

B Select a Clock_21 violation which will open a spreadsheet viewer
window

B The spreadsheet will list all clock pins that are used as set or reset pins
B Select a pin in the spreadsheet and click on the Incremental Schematic
B A path from the clock to a flip-flop set or reset pin is displayed

NOTE: A Clock_21 violation occurs for any pin declared in a clock constraint with an
unblocked path to a flip-flop d-pin regardless of whether or not this pin is
actually used as a clock.

B Hover the cursor over any non-path input and schematic log window
provides information about this input

B Double-click on this input to display it's fan-in cone

B Eliminate this violation by either using testmode to block this path,
changing the logic or removing the clock constraint

Clock_27 violations

B Select a Clock_27 violation and click on the Incremental Schematic

B A path from a clock through a CGC to a flip-flop clock pin is displayed

NOTE: A Clock_27 violation occurs when clock edge, expected at the flip-flop clock pin,
cannot be produced by the CGC

Synopsys, Inc. H



The Need for DFT-Optimized Design

Step-by-step Solution

B Eliminate this violation by either changing the CGC edge type or

changing the inversion parity of the clock path between the CGC and the
flip-flop

Clock_28 violations

Select a Clock 28 violation and select the Incremental Schematic

Clocks that drive a flip-flop clock pin through re-convergent paths or
clock paths that have re-convergent enables is displayed

Hover the cursor over any non-path input and schematic log window
provides information about this input

Double-click on an input to display it's fan-in cone

Eliminate Clock 28 violations by changing the clock logic to block all but
one of the re-convergent paths during capture

Scan_07 violations

Select a Scan_07 violation and select the Incremental Schematic
Sequentially derived internal signals declared as a testmode is displayed

Hover the cursor over any non-path input and schematic log window
provides information about this input

Double-click on an input to display it's fan-in cone

Eliminate Scan_07 violations by changing the clock logic to block all but
one of the re-convergent paths during capture

Scan_22 violations

Select a Scan_22 violation and display the Incremental Schematic

The portion of the scan chain that spans the domain crossing as well as
the clocks feeding these scan cells is displayed

Eliminate Scan_22 violations by inserting a lockup latch at the domain
crossing

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Topology_03 violations

B Select a Topology 03 violation and display the Incremental Schematic

B A flip-flop and an unblocked path to a second flip-flop set or reset pin is
displayed

B Eliminate the Topology 03 violations by blocking the path in scan mode

Topology_05 violations

B Select a Topology_ 05 and display the Incremental Schematic
B The devices wire-ANDed or wire-ORed is displayed

B Eliminate the Topology 05 violations by changing the logic to eliminate
the wired connection

Topology_ 13 violations

B Select a Topology_13 violation and display the Incremental Schematic

B The re-convergence logic and the path from the re-converge node to a
flip-flop set or reset pin is displayed

B Eliminate the Topology 13 violation by changing the logic to block all
but one of the re-converging paths in capture mode. Blocked paths may
cause a reduction in coverage in which case consider use of test points

Tristate 06 violations

B Select a Tristate_06 violation and display the Incremental Schematic

B The wired net, it's tristate drivers and the enable control nodes are
displayed

B The violation message identifies the problem such as no drivers on or
more than one driver on

B Eliminate Tristate_06 violations by changing the enable decode logic so
that it is fully decoded

67
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Achieve BIST Readiness (goal name = dft_bist_ready)

B Run the dft bist ready goal. The dft_bist_ready goal can be run
from the DFT sub-methodology. You can select it in the “Goal Setup and
Run” tab of the GUI, by clicking on the “Select Methodology” link. In the
pop-up window, select “SpyGlass Sub-Methodology” and click OK. The
DFT goals will appear in the left window, as shown below.

e Edt Run Took Hep

G 010 T —— oal Selup & Run g RS T
" Cio to Central Setug’ and setup Blackboses. Select  design goal for analysis, and add setup informa. #, seorch g In [Session Log g Go %
Select Godl | Central Setup | |

() Run Selected Goal(s): 0152 Select Goaks): A, None _t Run in Group Mode

Methodology:  Methodology Al Spy Glass Sub-Methodologies

T, Select Methodology... - Feload
Goal | Sewp status | Run staws | [» Help ‘
BaseSnyGlass |
Clock-resst What's Next?
guﬁnatvainta Click on the text of a goal or sub-methodology to see its in this window
=]

Select Methodology
[ sift_setup Setup Recormmencle]  Please set the Methadalogy to one of following:
= alft_stuck_at_coverag.. Setup Optional Guickeare Refersnce Methodology

= dit_hest_practice

Setup Optional ~ New RTL biock developrent
P (RIL
[~ dft fatches Setup Recommen| & PED
P {Netist)

[ | st scan_ready Setup Recommencel - 50C integration & implemertation

= ft_bist_ready Setun Optional # SpyGlass Sub-Methodology (BaseSpy Glass, Clock-reset, Constraints, DFT, Power, THV)

- Custom: (path: AuforitestcasesiX Checkitestoase ] )
Setup Recommence|

Clisk hiere  ta invoke Methodology Configuration System to ecit the current methadology
o create anew methadology

[ dft_test_paints

= dft_biock_check Setup Optional

g

OK Cancel
SpyGlass Exit Code 0 (Rule-checking completed

¥

Saturday |anuary lSI

FIGURE 34. DFT goals

B In BIST (Built-In-Self-Test) designs, the scan output is compressed into

a signature register, and capturing unknown values will corrupt the
signature.

A design is BIST ready when no unknown values (“X”) are captured in
the scannable flip-flops of the design. This is because in BIST (Built-In-
Self-Test) designs, the scan output is compressed into a signature
register, and capturing unknown values will corrupt the signature. This
can also be the case when ATPG Compression is used, so you should

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

consider running this goal also for designs using such Compression
techniques.

B The dft_bist_ready goal checks the following rules:

O BIST_O01: Flip-flops that have more than the specified number of
flip-flops and black boxes in their fan-in cones

O BIST_02: Flip-flops that are driven by a gate instance with large
fan-in

O BIST_03: Flip-flops that remain in unknown state after initialization

O BIST_04: Primary outputs or inout ports and data pins of scannable
flip-flops that have unknown values in their fan-in cones

O BIST_O05: In scan node, have TIE-X cells outputs bypassed

B |t also runs the Info_testmode and Info_testclock rules to document the
propagation of the testclock and testmode signal to help debug rule
violations.

Adding Testpoints (goal name = dft_test_points)

TA_09 debug

B Run the dft test points goal.

B The TA_09 generates a report test_points_selected_2.rpt that lists all
suggested test points. The report is sorted in descending order for the
number of nets affected by the test point and also lists the coverage
that would be obtained if all test points up to that place in the list are
used.

B It is often the case that not all of the test points are required. TA_09
also produces a constraint file called test_points_selected 2.rpt that
contains a test point constraint (see DFT User Guide section SpyGlass
DFT Constraints Currently Defined) for each test point in the report. This
file can be edited to remove undesired test points--for example, test
points in IP blocks or in critical timing areas of the design.

B Save the edited report in the working directory and rerun SpyGlass DFT.
The Info_coverage rule indicates the coverage as if the design was
modified for the selected set of test points.

Synopsys, Inc. n



The Need for DFT-Optimized Design

Step-by-step Solution

B Once a selection of test points has been made, then the RTL files can be
edited as illustrated in FIGURE 17. Flip-flop added for Controllability and
FIGURE 18. Scan chain.

Validating Scan Chains (goal name = dft_scan_chain)

Scan_22

Scan_24

Scan_25

Scan_26

Scan chains must be specified using scan_chain constraint as described in
the Verifying Scan Chains section.

Scan_22 will flag incomplete chains and highlight potential places where
the chains are not properly connected.

B Click Soc_04. Select a violation of Scan_22.

B Soc_04 will highlight the scannable values defined for this chain. If the
scan mux at the point of the Scan_22 violation is not correct, then
either change the Define_tag definition or change the connections to
this scan mux.

Scan_24 identifies flip-flops that are not part of any chain.

If any of these flip-flops should on a chain, verify that the scan enable
conditions for this chain are defined in a define_tag constraint.

Scan_25 identifies chains that contain data in version. Violations may be
caused by incorrectly wired scan chains scan flip-flop models.

Scan_26 identifies scan chains that do not have lockup latches driving the
scan-out pin. The cause may be a design error in which the latch was never
inserted into the design or a wiring error such that the latch is not wired in

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

a lockup configuration.

B Display the scan-out pin, as described in this scan_chain constraint, in

the IS.

B Probing on this pin will determine whether or not a latch is in the design.
If not present, then the design must be changed.

B If incorrect values or if no values are reaching the latch, then there is a
connection problem associated with this latch. Probing the latch enable
pin in the IS should reveal the cause.

Info_scanchain

This informational rule generates the scan chain information as available in
the design for debug purpose. It generates appropriate schematic
information for scan chain viewing. It also generates text report to list all
the flip-flops in the scan chains as shown in the following figure.

#3ection 1 of top module

.

RefDesCore’:

BEEGIN

scanchain id : chain 1

scanout : RefDesCore.usb_susp_o
scanin : RefDesCore. scan_inl
clock domains : 1 (RefDescore.cIleD)
scanchain length : 25720

cell order scan_chain_id cell type

[afululu] chain 1 <flop> RefDesCore.clkl100
0001 chain 1 <flop> RefDesCore.<clkl100
000z chain 1 <flop> RefDesCore.<clkl100
0003 chain:l <flop> RefDesCore.<clkl100

shift_clock

RefDesCore.
RefDesCore.
RefDesCore.
RefDesCore.

clock_polarity
wh_s2_usbhZ.
wh_s2_usbhZ.
wh_s2_usbZ.
wh_s2_usbZ.

hier_name

susp_o_reg
ud.intbh_reg

ud.\int srch re
u4.\int:srcb:reg

FIGURE 35. Flip-flops in the

scan chains

Verifying Test Signal Connections in Full-chip Designs (goal
name = dft_block_check)

71

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

Create test SGDC for Full-chip

Create define_tag constraints that drive the test controller to the state
necessary for each sub-block:

define_tag —tag <condition name | sub-block name> -name
<test controller port name> -value <value for this port>

Create require_value constraints on the test controller ports with the
values that should be produced for each sub-block setup:

require_value -tag <condition name | sub-block name> —name
<test controller port name> -value <value expected on this
pin for this condition>

Create require_value constraint for each of the sub-blocks using the
syntax:

require_value -tag <condition name | sub-block name> —name
<sub-block pin name> -value <value expected on this pin for
this condition>

Create require_path constraints for each of the sub-blocks using the
syntax:

require_path -tag <condition name | sub-block name> -from
<controller port name> —to <sub-block pin name>

Declare all sub-blocks with require_value or require_path constraints as
black boxes.

Add all available block.sgdc files and black box these modules.

Subblock Check (goal name = dft_block_check)

Follow the diagnostic procedure shown in Start with the Soc_01
violations for FIGURE 21. Test Connection Verification Procedure
require_value constraints on test controller outputs. (Remember that
Soc_01 simulates the values specified in define_tag —name XX and
checks if the require_value constraints with same XX name are
achieved.)

Soc_01 will have a violation for nodes that do not have the value
specified by a require_value constraint. If any violations are issued,

Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

check the define_tag sequence and the corresponding require_value
constraints. Complex define_tag sequences can be debugged by cutting
the define_tag sequence into smaller pieces and putting require_value
constraints on the state variables inside the test controller. If there are
still Soc_01 violations, then repeat this process with an even smaller
sequence.

B Soc 01 info will highlight nodes that do achieve the required values.
The use of this rule may be an aid in debugging Soc_01 violations since
it can be used to confirm that required values for a given define_tag
name are achieved.

B When there are no Soc_01 violations for the test controller outputs,
select Soc_02 violations for require_path constraints that define test
controller and sub-block paths. Selecting an Soc_02 will highlight the
violating connection in the MS. If a topological path does not exist, then
either the design is not clearly understood or the enabling conditions are
incorrect.

B If the require_path constraint does not specify a setup condition, then
an Soc_02 violation means that no topological path exists.

nlf the require_path constraint does specify a setup condition, then an
Soc_02 violation means that either no topological path exists or the
values required to sensitize this path are incorrect.

B An Soc_02_info violation for a require_path may provide useful
additional information. (Refer to the Soc_02_info rule in the
Connectivity Verify Rules Reference Guide.)

B Soc_ 05 violations highlight pins that have not achieved the values
specified in their block.sgdc files. Such violations are caused by either a
design error in the connection to a sub-block or in the test_mode and
testclock constraints for the top-level design. Info_testmode and
Info_testclock may be an aid in diagnosing these violations.

Creating and Validating an Abstract Model for a Block (goal
names = dft_abstract, dft_abstract_validate)
SpyGlass DFT supports a hierarchical SoC methodology in which a

simplified abstract model of the block is created when verifying the block.
You can use this model instead of the original RTL for efficient verification

at the top/SoC level.
73
Synopsys, Inc.



The Need for DFT-Optimized Design

Step-by-step Solution

The creation of the abstract model is done by running the dft_abstract goal
on the block.

When using abstract models for one or more lower level blocks in a design,
the dft_abstract_validate goal verifies that the constraints under which the
abstraction was done are met in the current design

Refer to the SoC Methodology User Guide for more information on the use
of the hierarchical SoC methodology for DFT.

Using Autofix/Selective Autofix

The AutoFix feature provides the capability to automatically fix the issues
reported by the supported rules by modifying the RTL. The Selective
Autofix feature provides the ability to fix the reported issues selectively.

You can enable the Autofix feature for a goal and for the supported rules
using the dft_autofix and the rme_active parameters.

The following snippet from the project file describes method to enable the
autofix feature for the TA_09 rule:

current_goal dft/dft_test points
set_parameter dftAutoFix {+RULES[TA_09]}
set_parameter rme_active 1

For more information on running the Selective Autofix feature, refer to the
Running the Selective Autofix section in the DFT Rules Reference Guide.

Synopsys, Inc.



~ Appendix A

Sample SGDC File:

current_design RefDesCore

/vy - ———————————
// The following clocks have been found by running
"Dft_setup” goal.

// -
clock -name "RefDesCore.mc_clk_ i -domain
""RefDesCore.mc_clk_i" -period 10.000000 -testclock

clock -name "RefDesCore.eth_mtx_clk_pad_i" -domain
"RefDesCore.eth_mtx_clk _pad_i" -period 10.000000 -testclock
clock -name "RefDesCore.clkl100" -domain ""RefDesCore.clk100"
-period 10.000000 -testclock

// -
// The following constraints have been found by running
Dft_setup goal

// -
test_mode -name "'RefDesCore.rstl00" -value 1 -scanshift

test _mode -name ""RefDesCore.dftreset” -value 1 -scanshift
test_mode -name "'RefDesCore.usb_phy clk pad_i_en"™ -value ""1"

-scanshift
75
Synopsys, Inc.



Appendix A

s

Synopsys, Inc.



	SpyGlass® DFT Submethodology (for GuideWare 2017.12)
	Preface
	About This Book
	Contents of This Book
	Typographical Conventions

	The Need for DFT- Optimized Design
	The Need for DFT-Optimized Design
	Introduction
	Objective
	Tool Versions
	References


	Document Overview
	GuideWare Reference Methodology
	Prerequisites

	Designing for Test
	Scan Flip-flops and Chains
	Latch Transparency
	Capture

	Performing DFT Analysis using SpyGlass DFT
	DFT Setup
	DFT Setup Manager
	Create Constraints for Bidirectional Ports

	Steps to maximize fault coverage
	Achieve Scannability
	Make Latches Transparent
	Compliance to DFT Best Practices
	Preparing design for BIST
	Adding Testpoints
	Verifying Scan Chains
	Verifying Test Signal Connections in Full-chip Designs
	Create test Constraints for Full Chip
	Connection Verification Procedure

	GuideWare Methodology for DFT

	Step-by-step Solution
	Setup for DFT (goal name = dft_setup)
	Create necessary clock Constraints
	Create necessary test_mode Constraints

	Achieve Scannability (goal name = dft_scan_ready)
	Clock_11 Debug
	Diagnose_testclock
	Info_testclock
	Async_07 Debug
	Async_08 debug
	Diagnose_testmode
	Info_testmode
	Info_scanwrap debug
	Info_noscan debug
	Info_inferredNoscan debug
	Viewing the estimate of fault coverage of the design

	Ensure Compliance to DFT Best Practices (goal name = dft_best_practice)
	Review the stuck_at_coverage_audit report
	Make flip-flops scannable
	Make Latches Transparent
	Scan-wrap black boxes
	Combinational Loops Made Transparent
	Testmode/Tied pins made controllable
	Hanging nets made controllable
	Tristate nets made observable
	The force_ta nets and test_point constraint pins made testable
	The no-scan flip-flops made scannable
	Using the Coverage_Audit report to ensure test operation
	Async_02 violations
	Async_11 violations
	Clock_04 violations
	Clock_08 violations
	Clock_16 violations
	Clock_17 violations
	Clock_21 violations
	Clock_27 violations
	Clock_28 violations
	Scan_07 violations
	Scan_22 violations
	Topology_03 violations
	Topology_05 violations
	Topology_13 violations
	Tristate_06 violations

	Achieve BIST Readiness (goal name = dft_bist_ready)
	Adding Testpoints (goal name = dft_test_points)
	TA_09 debug

	Validating Scan Chains (goal name = dft_scan_chain)
	Scan_22
	Scan_24
	Scan_25
	Scan_26
	Info_scanchain

	Verifying Test Signal Connections in Full-chip Designs (goal name = dft_block_check)
	Create test SGDC for Full-chip

	Subblock Check (goal name = dft_block_check)
	Creating and Validating an Abstract Model for a Block (goal names = dft_abstract, dft_abstract_validate)
	Using Autofix/Selective Autofix


	Appendix A


